分析 本題構造新函數g(x)=exf(x)-4ex+2,利用條件f(x)+f’(x)>4,得到g′(x)>0,得到函數g(x)單調遞增,再利用f(0)=2,得到函數g(x)過定點(0,0),解不等式exf(x)>4ex-2,即研究g(x)>0,結合函數的圖象,得到x的取值范圍,即本題結論.
解答 解:令g(x)=exf(x)-4ex+2,
則g′(x)=exf(x)+exf′(x)-4ex,
∵對任意x∈R,f(x)+f′(x)>4,
∴g′(x)=ex[f(x)+f′(x)-4]>0,
∴函數y=g(x)在R上單調遞增.
∵f(0)=2,
∴g(0)=0.
∴當x<0時,g(x)<0;
當x>0時,g(x)>0.
∵exf(x)>4ex-2,
∴exf(x)-4ex-2>0,
即g(x)>0,
故答案為:{x|x>0}.
點評 本題考查了函數的導數與單調性,還考查了構造法思想,本題有一定的難度,計算量適中,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A_1}}$ | B. | $\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}-\overrightarrow{A{A_1}}$ | C. | $\overrightarrow{AB}+\overrightarrow{AD}-\overrightarrow{A{A_1}}$ | D. | $\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}-\overrightarrow{A{A_1}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com