2.若M是△ABC的邊BC上一點,且$\overrightarrow{CM}=3\overrightarrow{MB},設(shè)\overrightarrow{AM}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λ的值為$\frac{3}{4}$.

分析 由題設(shè)CM:MB=3:1,過M作MN∥AC,交AB于N,則$\frac{BN}{BA}=\frac{BM}{BC}$=$\frac{1}{4}$,由此能求出λ的值.

解答 解:∵M是△ABC的邊BC上一點,且$\overrightarrow{CM}$=3$\overrightarrow{MB}$,
∴由題設(shè)CM:MB=3:1,
過M作MN∥AC,交AB于N,
則$\frac{BN}{BA}=\frac{BM}{BC}$=$\frac{1}{4}$,
從而$\frac{AN}{AB}$=$\frac{3}{4}$,
∵$\overrightarrow{AM}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,
∴λ=$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點評 本題考查實數(shù)值的求法,是中檔題,解題時要認真審題,注意平面向量知識的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓O上有三點A,B,C,AC為直徑,其中|${\overrightarrow{AB}}$|=2,|${\overrightarrow{AC}}$|=$\sqrt{7}$,則$\overrightarrow{AO}$•$\overrightarrow{BC}$的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對任意的實數(shù)x,f′(x)>$\frac{1}{2}$恒成立,且f(3)=$\frac{9}{2}$,則不等式f(x2-2x)<$\frac{1}{2}$(x2-2x)+3的解集為(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}中,a2=-15,a4+a7=5.
求:(1)a1和公差d;
(2)該數(shù)列的前100項的和S100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=x2+x-1,求f(2x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若數(shù)列{an}滿足logaan+1=1+logaan(a>0,a≠1),已知a為常數(shù),且a1+a2+…+a100=100,則
a2+a4+…+a98+a100=$\frac{100a}{1+a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\frac{{{{({1-i})}^2}}}{1+i}$=a-i,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A、B是△ABC的內(nèi)角,且cosA=$\frac{1}{3}$,sin(A+B)=1,則sin(3A+2B)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若數(shù)列{an}滿足an+1-2an=0(n∈N*),a1=2,則{an}的前6項和等于126.

查看答案和解析>>

同步練習(xí)冊答案