分析 通過設(shè)直線方程并代入P1(1,-2)、P2(2,-1.2)計算,進(jìn)而可得結(jié)論.
解答 解:設(shè)所在直線方程為:y=kx+b,
∵a1=-2,a2=-1.2,
∴$\left\{\begin{array}{l}{-2=k+b}\\{-1.2=2k+b}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=0.8}\\{b=-2.8}\end{array}\right.$,
∴直線方程為:y=0.8x-2.8,
∴an=0.8n-2.8,
故答案為:an=0.8n-2.8.
點評 本題借助直線考查數(shù)列,求出直線方程是解決本題的關(guān)鍵,注意解題方法的積累,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | [0,$\frac{\sqrt{2}}{2}$) | C. | (0,$\frac{\sqrt{2}}{2}$] | D. | [$\frac{\sqrt{2}}{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com