11.已知二次函數(shù)f(x)與函數(shù)y=-2(x+1)2的開口大小相同,開口方向也相同,f(x)的圖象的頂點(diǎn)是(1,2),定義在R上的函數(shù)g(x)是奇函數(shù),當(dāng)x>0時(shí),g(x)=f(x).
(1)求函數(shù)g(x)的解析式;
(2)作出函數(shù)g(x)的圖象,并說明g(x)的單調(diào)性.

分析 (1)根據(jù)圖象的特點(diǎn),先求出f(x)的解析式,根據(jù)函數(shù)奇偶性的性質(zhì),將x<0轉(zhuǎn)化為-x>0,即可求出函數(shù)的解析式.
(2)畫圖,由圖象得到單調(diào)性.

解答 解:(1)由題知:f(x)=-2(x+1)2+2,
當(dāng)x>0時(shí),g(x)=f(x)=-2x2+4x,
∵g(x)是奇函數(shù),
∴g(-x)=-g(x),
當(dāng)x=0時(shí),g(-0)=-g(0),
∴g(0)=0,
當(dāng)x<0時(shí),則-x>0,
∴g(-x)=-2x2-4x=-g(x),
∴g(x)=2x2+4x,
∴g(x)=$\left\{\begin{array}{l}{2{x}^{2}+4x,x<0}\\{-2{x}^{2}+4x,x≥0}\end{array}\right.$;
(2)圖象如圖所示:

由圖象可知,g(x)在[-1,1]上單調(diào)遞增,在(-∞,-1),(1,+∞)是單調(diào)遞減.

點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求法以及函數(shù)的圖象的識(shí)別,利用函數(shù)的奇偶性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列說法正確的是④
①4cos10°-tan80°化簡結(jié)果為$\sqrt{3}$;
②sinx+cosx+sinxcosx最大值為2;
③y=$\frac{sinx+1}{cosx+2}$的最大值為1;
④y=x+$\sqrt{4-{x^2}}$的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1a2=2,a3a4=32,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)全集U=R,集合A={x|$\frac{x-3}{x+2}$=0},B={x|x2-x-6=0},則陰影部分所表示的集合是( 。
A.{3}B.{-2}C.{3,-2}D.{∅}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合A,B,C,且A⊆B,A⊆C,若B={0,1,2,3,4},C={0,2,4,8},則滿足條件的集合A有8個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC的兩邊長分別為2,3,這兩邊的夾角的余弦值為$\frac{1}{3}$,則△ABC的外接圓的直徑為(  )
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{6}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C;
(2)若c=$\sqrt{14}$,且sinC=3sin2A+sin(A-B),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知正四棱臺(tái)高是12cm,兩底面邊長之差為10cm,全面積為512cm2
(1)求上、下底面的邊長.
(2)作出其三視圖(單位長度為0.5厘米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.用數(shù)學(xué)歸納法證明:f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$(n∈N*)的過程中,從n=k到n=k+1時(shí),f(k+1)比f(k)共增加了2k項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案