12.27${\;}^{-\frac{1}{3}}$-2${\;}^{-log_23}$的值為0.

分析 直接利用有理指數(shù)冪的運算性質(zhì)及對數(shù)的運算性質(zhì)化簡求值.

解答 解:27${\;}^{-\frac{1}{3}}$-2${\;}^{-log_23}$
=$({3}^{3})^{-\frac{1}{3}}-{2}^{lo{g}_{2}\frac{1}{3}}$
=$\frac{1}{3}-\frac{1}{3}$=0.
故答案為:0.

點評 本題考查有理指數(shù)冪的運算性質(zhì)及對數(shù)的運算性質(zhì),是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知p:x≤1,q:x≤2a-1,若p是q的充分條件,則實數(shù)a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.點P為正四面體ABCD的外接球上一動點,求|$\overrightarrow{PA}$+$\overrightarrow{PB}$|+|$\overrightarrow{PC}$+$\overrightarrow{PD}$|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥2}\\{y≤2}\end{array}\right.$,若z=-ax+y的最小值為-2,則a等于( 。
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\frac{(x+1)^{2}}{{x}^{2}+1}$,則f(-2016)+f(-2015)+…+f(2015)+f(2016)的值為4033.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知等差數(shù)列{an}的前n項和Sn,且a1=11,S7=35,則Sn中( 。
A.S6最大B.S7最大C.S6最小D.S7最小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=($\frac{1}{a}$)x(a>0且a≠1)的導數(shù)為( 。
A.($\frac{1}{a}$)xlnaB.-a-xlnaC.a-xlnaD.axln$\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.tan2α-sin2α-tan2αsin2α等于( 。
A.cos2αB.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知α∈(0,π),若cos(-α)-sin(-α)=-$\frac{1}{5}$,則tanα等于( 。
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.-$\frac{4}{3}$或-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

同步練習冊答案