分析 根據(jù)基本不等式,可求出$\frac{x+1}{{x}^{2}-3x+3}$∈(0,$\frac{2\sqrt{7}+5}{3}$],解方程求出滿足條件的x值,可得答案.
解答 解:∵x>-1,
∴$x+1+\frac{7}{x+1}$≥2$\sqrt{7}$,
∴$\frac{x+1}{{x}^{2}-3x+3}$=$\frac{1}{x+1+\frac{7}{x+1}-5}$∈(0,$\frac{2\sqrt{7}+5}{3}$],
若$\frac{x+1}{{x}^{2}-3x+3}$∈Z,
則$\frac{x+1}{{x}^{2}-3x+3}$=1,或$\frac{x+1}{{x}^{2}-3x+3}$=2,或$\frac{x+1}{{x}^{2}-3x+3}$=3,
解得:x=2-$\sqrt{2}$,或x=2+$\sqrt{2}$,或x=1,或x=$\frac{5}{2}$,或x=2,或x=$\frac{4}{3}$,
故M={2-$\sqrt{2}$,2+$\sqrt{2}$,1,$\frac{5}{2}$,2,$\frac{4}{3}$},
故答案為:{2-$\sqrt{2}$,2+$\sqrt{2}$,1,$\frac{5}{2}$,2,$\frac{4}{3}$}
點(diǎn)評 本題考查的知識點(diǎn)是集合表示法,基本不等式,是集合和不等式的綜合應(yīng)用,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (2,+∞) | C. | (-∞,0)∪(2,+∞) | D. | (-∞,1)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=log${\;}_{\frac{1}{2}}$x | B. | y=log2(x-1) | C. | y=log2$\frac{1}{x}$ | D. | y=log2|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | -10 | C. | $\frac{1}{10}$ | D. | -$\frac{1}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [e-3,e] | B. | (e-3,e) | C. | (-∞,e-3]∪[e,+∞) | D. | (0,e-3)∪(e,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com