8.設f(x)是定義在R上的增函數(shù),且對任意x,都有f(-x)+f(x)=0恒成立,如果實數(shù)m,n滿足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2的取值范圍是( 。
A.(9,49)B.(13,49)C.(9,25)D.(3,7)

分析 根據(jù)對于任意的x都有f(-x)+f(x)=0恒成立,不等式可化為f(m2-6m+21)<f(-n2+8n),利用f(x)是定義在R上的增函數(shù),可得(m-3)2+(n-4)2<4,確定(m-3)2+(n-4)2=4內(nèi)的點到原點距離的取值范圍,利用m2+n2 表示(m-3)2+(n-4)2=4內(nèi)的點到原點距離的平方,即可求得m2+n2 的取值范圍.

解答 解:∵對于任意的x都有f(-x)+f(x)=0恒成立,
∴f(-x)=-f(x),
∵f(m2-6m+21)+f(n2-8n)<0,
∴f(m2-6m+21)<-f(n2-8n)=f(-n2+8n),
∵f(x)是定義在R上的增函數(shù),
∴m2-6m+21<-n2+8n,
∴(m-3)2+(n-4)2<4
∵(m-3)2+(n-4)2=4的圓心坐標為:(3,4),半徑為2,
∴(m-3)2+(n-4)2=4內(nèi)的點到原點距離的取值范圍為(5-2,5+2),即(3,7),
∵m2+n2 表示(m-3)2+(n-4)2=4內(nèi)的點到原點距離的平方,
∴m2+n2 的取值范圍是(9,49).
故選:A.

點評 本題考查函數(shù)的奇偶性與單調(diào)性,考查不等式的含義,解題的關鍵是確定圓內(nèi)的點到原點距離的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,ABCDEF是邊長為2的正六邊形,則下列命題成立的是( 。
A.$\overrightarrow{CA}$+$\overrightarrow{CE}$=$\overrightarrow{CF}$B.$\overrightarrow{CE}$-$\overrightarrow{AF}$=$\overrightarrow{AB}$C.$\overrightarrow{BD}$•$\overrightarrow{FD}$=0D.$\overrightarrow{CD}$•($\overrightarrow{AB}$-$\overrightarrow{AE}$-$\overrightarrow{EF}$)=-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某班40名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如圖所示.(學生成績都在[50,100]之間)
(1)求頻率分布直方圖中a的值;
(2)估算該班級的平均分;
(3)若規(guī)定成績達到80分及以上為優(yōu)秀等級,從該班級40名學生中任選一人,求此人成績?yōu)閮?yōu)秀等級的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設點P(x0,1),若在以O為圓心的圓O:x2+y2=4上存在一點Q,使∠OPQ=30°,則x0的取值范圍是$[-\sqrt{15},\sqrt{15}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\sqrt{2}$,則其漸近線方程為( 。
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知三個不同的平面α、β、γ和兩條不同的直線m、n,有下列五個命題:
①若m∥n,m⊥α,則n⊥α;            、谌鬽⊥α,m⊥β,則α∥β
③若m⊥α,m∥n,n?β,則α⊥β;          、苋鬽∥α,α∩β=n,則則m∥n
⑤若α⊥γ,β⊥γ,且α∩β=m,則m⊥γ.
其中正確命題的編號是①②③④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,△ADP為正三角形,四邊形ABCD為正方形,平面PAD⊥平面ABCD.M為平面ABCD內(nèi)的一動點,且滿足MP=MC.則點M在正方形ABCD內(nèi)的軌跡為(O為正方形ABCD的中心)(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖所示,M、N、K分別是正方體ABCD-A1B1C1D1的棱AB,CD,C1D1的中點.求證:
(1)AN∥平面A1MK;
(2)MK⊥平面A1B1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+xsinx+cosx,且曲線y=f(x)在點(a,f(a))處與直線y=b相切,試求函數(shù)g(x)=bx2+2x+a的最小值.

查看答案和解析>>

同步練習冊答案