6.f(3x)=x,則f(10)=( 。
A.log310B.lg3C.103D.310

分析 設(shè)3x=t,求出f(t)=log3t,由此能求出f(10).

解答 解:∵f(3x)=x,
∴設(shè)3x=t,則x=log3t,
∴f(t)=log3t,
∴f(10)=log310.
故選:A.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}中,第1項為2,第2項為8,那么它的第3項為( 。
A.-10B.10C.14D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x2+y2=9的內(nèi)接三角形ABC中,A點的坐標(biāo)是(-3,0),重心G的坐標(biāo)是$(-\frac{1}{2},-1)$,求:
(Ⅰ)直線BC的方程;
(Ⅱ)弦BC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線l:y=kx+1與圓O:x2+y2=1相交于A,B兩點,則“k=1”是“△OAB的面積為$\frac{1}{2}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.圓x2+y2=8內(nèi)有一點P0(-1,2),AB為過點P0且傾斜角為α的弦.
(1)當(dāng)α=135°時,求AB的長;
(2)若AB=2$\sqrt{7}$,寫出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上最大值除以最小值為-2,求實數(shù)q的值;
(2)問是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且區(qū)間D的長度為12-t(此區(qū)間[a,b]的長度為b-a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.形如y=$\frac{|x|-c}$(c>0,b>0)的函數(shù)因其圖象類似于漢字中的“囧”字,故我們把其生動地稱為“囧函數(shù)”.若函數(shù)f(x)=loga(x2+x+1)(a>0,a≠1)有最小值,則當(dāng)c,b的值分別為方程x2+y2-2x-2y+2=0中的x,y時的“囧函數(shù)”與函數(shù)y=loga|x|的圖象交點個數(shù)為( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時,f(x)=ln(x+1),則函數(shù)f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線l1:3x+4y+1=0與直線l2:4x-3y+2=0,則直線l1與直線l2的位置關(guān)系是( 。
A.平行B.垂直C.重合D.無法確定

查看答案和解析>>

同步練習(xí)冊答案