11.等差數(shù)列{an}中,a2+a5=19,S5=40,則公差d=3.a(chǎn)10=29.

分析 利用等差數(shù)列的通項公式及其前n項和公式即可得出.

解答 解:∵等差數(shù)列{an}中,a2+a5=19,S5=40,
∴$\left\{\begin{array}{l}{2{a}_{1}+5d=19}\\{5{a}_{1}+\frac{5×4}{2}d=40}\end{array}\right.$,解得a1=2,d=3,
∴an=2+3(n-1)=3n-1.
∴a10=29.
故答案分別為:3;29.

點評 本題考查了等差數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“m>0”是“函數(shù)y=2x2+mx+n在[0,+∞)上單調(diào)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分與不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,“$\overrightarrow{AB}•\overrightarrow{BC}$=0”是“△ABC是直角三角形”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)復(fù)數(shù)z滿足i(z+1)=-3+2i(i是虛數(shù)單位),則|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x=3n+1,n∈N},B={6,8,10,12,14},則集合A∩B中的元素個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sinx+cosx,且f′(x)=3f(x),則tan2x的值是(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.下表給出了從某校500名12歲的男生中用簡單隨機抽樣得出的120人的身高資料(單位:厘米):
區(qū)間界限[122,126)[126,130)[130,134)[134,138)[138,142)
人數(shù)58102233
區(qū)間界限[142,146)[146,150)[150,154)[154,158)
人數(shù)201165
(1)列出樣本的頻率分布表; 
(2)畫出頻率分布直方圖;
(3)估計身高低于134厘米的人數(shù)占總?cè)藬?shù)的百分比和身高在區(qū)間[134,146)(厘米)內(nèi)的人數(shù)占總?cè)藬?shù)的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.求值:cos$\frac{5}{4}$π=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面區(qū)域$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+2y-4≤0\end{array}\right.$恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋.
(1)作出該不等式組所確定的平面區(qū)域試,并求圓C的方程.
(2)若斜率為1的直線l與圓C交于不同兩點A,B,滿足CA⊥CB,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案