2.在復(fù)平面內(nèi),復(fù)數(shù)Z=$\frac{4}{1+i}$的虛部為(  )
A.2B.-2C.2iD.2$\sqrt{2}$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)Z,則Z的虛部可求.

解答 解:∵Z=$\frac{4}{1+i}$=$\frac{4(1-i)}{(1+i)(1-i)}=2-2i$,
∴復(fù)數(shù)Z=$\frac{4}{1+i}$的虛部為:-2.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)f(x)的一個(gè)上界,已知函數(shù)g(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$為奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)當(dāng)x∈(-1,1)時(shí),有g(shù)(1-m)+g(1-m2)<0,求m的取值范圍;
(3)求函數(shù)g(x)在區(qū)間[$\frac{5}{3}$,3]上的所有上界構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)設(shè)z=a+bi(a,b∈R),求證:$\frac{z-1}{z+1}$為實(shí)數(shù)的充要條件是b=0.
(2)證明:當(dāng)a>1時(shí),$\sqrt{a+1}$+$\sqrt{a-1}$<2$\sqrt{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=ln(2-|x-1|)的定義域?yàn)椋?1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知變量x,y滿足線性約束條件$\left\{\begin{array}{l}{3x+y-2≤0}\\{x-y+2≥0}\\{x+y+1≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{1}{2}$x-y的最小值為( 。
A.-$\frac{5}{4}$B.2C.-2D.$\frac{13}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.己知函數(shù)f(x)=x2+bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若函數(shù)g(x)=f(sinx),則函數(shù)g(x)的最大值是(  )
A.-$\frac{1}{2}$B.0C.2D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosB+bcosA=$\frac{{\sqrt{3}c}}{2sinC}$,c=2,角C是銳角,則a+b+c的取值范圍為(4,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合M={x|x2-3x-4≥0},N={x|-3≤x<3},則M∩N=( 。
A.[-3,-1]B.[-1,3)C.(-∞,-4]D.(-∞,-4]∪[1,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,若點(diǎn)F2關(guān)于一條漸近線的對(duì)稱(chēng)點(diǎn)為M,則|F1M|=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案