9.已知A、B、C、D四點(diǎn)在半徑為$\frac{5\sqrt{2}}{2}$的球面上,且AC=BD=5,AD=BC=$\sqrt{41}$,AB=CD,則三棱錐D-ABC的體積是20.

分析 構(gòu)造長方體,其面上的對角線構(gòu)成三棱錐D-ABC,計(jì)算出長方體的長寬高,即可求得三棱錐D-ABC的體積.

解答 解:由題意,構(gòu)造長方體,其面上的對角線構(gòu)成三棱錐D-ABC,如圖所示,
設(shè)長方體的長寬高分別為a,b,c,
則$\left\{\begin{array}{l}{{a}^{2}+^{2}+{c}^{2}=50}\\{{a}^{2}+^{2}=25}\\{{a}^{2}+{c}^{2}=41}\end{array}\right.$,
解得a=4,b=3,c=5
∴三棱錐D-ABC的體積是V=4×3×5-4×$\frac{1}{3}×\frac{1}{2}×4×3×5$=20
故答案為:20.

點(diǎn)評 本題考查三棱錐體積的計(jì)算,考查學(xué)生的計(jì)算能力,構(gòu)造長方體是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$則f(f($\frac{1}{8}$))=$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線1在直角坐標(biāo)系xOy中的參數(shù)方程為$\left\{\begin{array}{l}x=2+tcoaα\\ y=1+tsinα\end{array}\right.$(t為參數(shù),α為傾斜角),曲線C的極坐標(biāo)方程為ρ=2cosθ(其中坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸.取相同單位長度).
(1)寫出曲線C的直角坐標(biāo)方程;
(2)若曲線C與直線l相交于不同的兩點(diǎn)M,N,設(shè)P(2,1),求|PM|+|PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l1:x+y-3=0,l2:x-y十1=0,且A為兩直線的交點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)求過點(diǎn)A且斜率為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若等比數(shù)列{an}的前n項(xiàng)和為Sn,且S2=3,S4=15,則S12=4095.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在銳角△ABC中,內(nèi)角∠A、∠B、∠C的對邊分別為a、b、c,已知a=$\sqrt{2}$bsinA.
(1)求∠B的大;
(2)若AO是邊BC上的中線,AO=BC=2,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)f(x)滿足:f(0)=m-4,f(m)=-m2+m-4,且對任意的實(shí)數(shù)t,都有f(-t)=f(2m+t).
(1)若函數(shù)f(x)在區(qū)間[-1,3]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(2)若關(guān)于x的不等式f(x)<0的解集為(-1,3),求實(shí)數(shù)m的取值;
(3)若函數(shù)f(x)在區(qū)間[0,2]上的最小值為-$\frac{19}{4}$,求實(shí)數(shù)m的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=tan(2x-$\frac{π}{4}$)+1,x∈[0,π],使f(x)為正值的x的集合為[0,$\frac{3π}{8}$)、或($\frac{π}{2}$,$\frac{7π}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=sin$\frac{x}{2}$cos$\frac{x}{2}$+$\frac{\sqrt{3}}{2}$cosx,x∈[0,$\frac{π}{2}$]的值域?yàn)閇$\frac{1}{2}$,1].

查看答案和解析>>

同步練習(xí)冊答案