7.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}x+y≤4\\ y≥x\\ x≥1\end{array}\right.$,則$\sqrt{{x^2}+{y^2}}$的最大值為$\sqrt{10}$.

分析 作出平面區(qū)域,$\sqrt{{x^2}+{y^2}}$表示區(qū)域內(nèi)的點(diǎn)與原點(diǎn)的距離,數(shù)形結(jié)合可得.

解答 解:作出條件$\left\{\begin{array}{l}x+y≤4\\ y≥x\\ x≥1\end{array}\right.$所對(duì)應(yīng)的平面區(qū)域(如圖△ABC),
$\sqrt{{x^2}+{y^2}}$表示區(qū)域內(nèi)的點(diǎn)與原點(diǎn)的距離,
數(shù)形結(jié)合可得區(qū)域內(nèi)的點(diǎn)A(1,3)滿足題意,
由距離公式計(jì)算可得$\sqrt{{x^2}+{y^2}}$的最大值為$\sqrt{10}$,
故答案為:$\sqrt{10}$.

點(diǎn)評(píng) 本題考查簡(jiǎn)單線性規(guī)劃,準(zhǔn)確作圖是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知點(diǎn)P在角α的終邊上,且坐標(biāo)為(-1,2).
(1)求sinα和cosα的值;
(2)求$sin({2α-\frac{π}{3}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=ln|x-2|-|x-2|,則它的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若cosθ=$\frac{3}{5}$(-$\frac{π}{2}$<θ<0),則cos(θ-$\frac{π}{6}$)的值是(  )
A.$\frac{3\sqrt{3}±4}{10}$B.$\frac{4±3\sqrt{3}}{10}$C.$\frac{3\sqrt{3}-4}{10}$D.$\frac{3\sqrt{3}+4}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)f(x)=3x2-5x+a的一個(gè)零點(diǎn)在區(qū)間(-2,0)內(nèi),另一個(gè)零點(diǎn)在區(qū)間(1,3)內(nèi),則實(shí)數(shù)a的取值范圍是(-12,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖所示的是水平放置的三角形的直觀圖,D為△ABC中BC的中點(diǎn),則原圖形中的AB,AD,AC三條線段中( 。
A.最長(zhǎng)的是AB,最短的是ACB.最長(zhǎng)的是AC,最短的是AB
C.最長(zhǎng)的是AB,最短的是ADD.最長(zhǎng)的是AC,最短的是AD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{y≥-1}\end{array}\right.$,求:
(Ⅰ)z=x+2y-4的最大值;
(Ⅱ)z=$\frac{2y+1}{x+1}$的范圍;
(III)z=x2+y2-10y+25的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.若x>0,y>0,x+y=1,求證:$\frac{1}{x}+\frac{1}{y}≥4$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)集合A={(x,y)|(x-3)2+(y-4)2=$\frac{4}{5}$},B={(x,y)|(x-3)2+(y-4)2=$\frac{16}{5}$},C={(x,y)|2|x-3|+|y-4}=λ},若(A∪B)∩C≠∅,則實(shí)數(shù)λ的取值范圍[$\frac{2\sqrt{5}}{5}$,4].

查看答案和解析>>

同步練習(xí)冊(cè)答案