A. | 1或2 | B. | 2 | C. | 1或0 | D. | 0或1或2 |
分析 函數(shù)f(x)=$\frac{1}{2}$x2-|x-2a|有三個或者四個零點可化為函數(shù)m(x)=$\frac{1}{2}$x2與函數(shù)h(x)=|x-2a|有三個或者四個不同的交點,作圖象確定a的取值范圍,從而確定函數(shù)g(x)=ax2+4x+1的零點個數(shù).
解答 解:∵函數(shù)f(x)=$\frac{1}{2}$x2-|x-2a|有三個或者四個零點,
∴函數(shù)m(x)=$\frac{1}{2}$x2與函數(shù)h(x)=|x-2a|有三個或者四個不同的交點,
作函數(shù)m(x)=$\frac{1}{2}$x2與函數(shù)h(x)=|x-2a|的圖象如下,
,
結合圖象可知,-0.5≤2a≤0.5,
故-$\frac{1}{4}$≤a≤$\frac{1}{4}$,
當a=0時,函數(shù)g(x)=ax2+4x+1有一個零點,
當a≠0時,△=16-4a>0,
故函數(shù)g(x)=ax2+4x+1有兩個零點,
故選A.
點評 本題考查了數(shù)形結合的思想應用及函數(shù)的零點與方程的根的關系應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com