分析 由Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+4,可得:當(dāng)n=1時(shí),a1=S1.當(dāng)n≥2時(shí),an=Sn-Sn-1,即可得出.
解答 解:∵Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+4,∴當(dāng)n=1時(shí),a1=$\frac{1}{4}+\frac{2}{3}$+4=$\frac{59}{12}$.
當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{1}{4}$n2+$\frac{2}{3}$n+4-$[\frac{1}{4}(n-1)^{2}+\frac{2}{3}(n-1)+4]$=$\frac{6n+5}{12}$.
∴an=$\left\{\begin{array}{l}{\frac{59}{12},n=1}\\{\frac{6n+5}{12},n≥2}\end{array}\right.$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、數(shù)列通項(xiàng)公式的求法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a⊥α,α⊥β,則a∥β | B. | 若a∥α,b∥α,則a∥b | C. | 若a∥α,α⊥β,則a⊥β | D. | 若a⊥α,a∥β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com