18.計(jì)算:
(1)(lg5)2+lg2•lg5+lg2;
(2)lg5(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg0.06+lg$\frac{1}{6}$.

分析 根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1)(lg5)2+lg2•lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1;
(2)lg5(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg0.06+lg$\frac{1}{6}$,
=lg5(3lg2+3)+3lg22+lg(0.06×$\frac{1}{6}$),
=3lg5lg2+3lg5+3lg22+lg0.01,
=3lg2(lg5+lg2)+3lg5-2,
=3lg2+3lg5-2,
=3(lg2+lg5)-2,
=3-2,
=1.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),靈活利用lg2+lg5=1是關(guān)鍵屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.絕對(duì)值不等式|x+1|<0的解集∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l1經(jīng)過兩點(diǎn)(-1,2),(-1,4),直線l2經(jīng)過兩點(diǎn)(0,1),(x-2,6),且l1∥l2,則x=( 。
A.2B.-2C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,在四邊形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,將四邊形ABCD沿對(duì)角線BD折成四面體A′BCD,使得平面A′BD⊥平面BDC,給出下列四個(gè)結(jié)論,其中正確的有( 。
A.A′B⊥CD
B.四面體A′BCD的體積為$\frac{1}{2}$
C.A′C與BD所成的角為60°
D.四面體A′BCD的外接球的表面積為$\frac{7π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.利用導(dǎo)數(shù)的定義求函數(shù)y=$\sqrt{x}$在x=4處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.較下列各組數(shù)的大。
(1)27,82;
(2)log0.22,log0.049;
(3)a1.2,a1.3;
(4)0.213,0.233

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知定義域?yàn)镽的函數(shù)f(x)=$\frac{1-{3}^{x}}{a+{3}^{x+1}}$.
(1)若a=1,求證函數(shù)f(x)不是奇函數(shù);
(2)若此函數(shù)是奇函數(shù).
①判斷并證明函數(shù)f(x)的單調(diào)性;
②對(duì)任意的正數(shù)x,不等式f[m(log3x)2+1]+f[-m(log3x)-2]>0取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若loga$\frac{3}{5}$<1(a>0且a≠1),則實(shí)數(shù)a的取值范圍是(0,$\frac{3}{5}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在三棱錐P-ABC中,PA=PB=$\sqrt{6}$,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(1)求證:PA⊥平面PBC;
(2)求異面直線AB和PC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案