19.已知方程$\frac{|{x}^{2}-1|}{x-1}$-kx+2=0恰有兩個(gè)根,則實(shí)數(shù)k的取值范圍是(0,1)∪(1,4).

分析 題意可轉(zhuǎn)化為函數(shù)y=$\frac{|{x}^{2}-1|}{x-1}$與函數(shù)y=kx-2的圖象有且只有兩個(gè)交點(diǎn),作圖象,利用數(shù)形結(jié)合求解.

解答 解:∵方程$\frac{|{x}^{2}-1|}{x-1}$-kx+2=0恰有兩個(gè)根,
∴函數(shù)y=$\frac{|{x}^{2}-1|}{x-1}$與函數(shù)y=kx-2的圖象有且只有兩個(gè)交點(diǎn),
作函數(shù)y=$\frac{|{x}^{2}-1|}{x-1}$與函數(shù)y=kx-2的圖象如下,
,
結(jié)合圖象可知,kn=0,km=1,kl=$\frac{2-(-2)}{1-0}$=4;
故實(shí)數(shù)k的取值范圍是
(0,1)∪(1,4).
故答案為:(0,1)∪(1,4).

點(diǎn)評(píng) 本題考查了方程的根與函數(shù)的圖象的交點(diǎn)的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,$\overrightarrow{AB}$=(2cosα,2sinα),$\overrightarrow{BC}$=(5cosβ,5sinβ),若$\overrightarrow{AB}$$•\overrightarrow{BC}$=-5,則|$\overrightarrow{AC}$|=( 。
A.4B.$\sqrt{10}$C.$\sqrt{19}$D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知sinA=$\frac{3}{5}$,tan(A-B)=-$\frac{1}{2}$.
(1)求tanB的值;
(2)若b=5,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,設(shè)正方體ABCD-A1B1C1D1中,M為AA1上點(diǎn),A1M:MA=3:1,求截面B1D1M與底面ABCD所成二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.從橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn)M向x軸作垂線,垂足恰為左焦點(diǎn)F1,點(diǎn)A、B是橢圓與x軸正半軸、y軸正半軸的交點(diǎn),且AB∥OM,|F1A|=$\sqrt{10}+\sqrt{5}$.
(Ⅰ)求該橢圓的離心率;
(Ⅱ) 若P是該橢圓上的動(dòng)點(diǎn),右焦點(diǎn)為F2,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:4x2+y2=16
(1)求橢圓C的長(zhǎng)軸長(zhǎng)和短軸長(zhǎng)    
(2)求橢圓C的焦點(diǎn)坐標(biāo)和離心率
(3)直線l:y=-2x+4與橢圓C相交于A,B兩點(diǎn),求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左頂點(diǎn)為A,右焦點(diǎn)為F,過(guò)點(diǎn)F的直線交橢圓于B,C兩點(diǎn).
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)直線AB和AC分別與直線x=4交于點(diǎn)M,N,問(wèn):x軸上是否存在定點(diǎn)P使得MP⊥NP?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|x-a|-$\frac{a}{2}$lnx,a∈R,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$為單位向量,且$\overrightarrow{{e}_{3}}$=$\frac{1}{2}$$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,(k>0),若以向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為兩邊的三角形的面積為$\frac{1}{2}$,則k的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案