8.若cosθ+sinθ=1,則(cosθ)2001+(sinθ)2002的值為1.

分析 根據(jù)cosθ+sinθ=1,兩邊平方,利用同角的平方關(guān)系得出sinθcosθ=0,從而求出sinθ、cosθ的值,即得(cosθ)2001+(sinθ)2002的值.

解答 解:∵cosθ+sinθ=1,
∴sin2θ+2sinθcosθ+cos2θ=1,
∴2sinθcosθ=0,
∴sinθ=0,cosθ=1,
或sinθ=1,cosθ=0;
∴(cosθ)2001+(sinθ)2002=1.
故答案為:1.

點(diǎn)評 本題考查了同角的三角函數(shù)關(guān)系的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等比數(shù)列{an}中,a2=1,公比q≠±1.若a1,4a3,7a5成等差數(shù)列,則a6的值是$\frac{1}{49}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a∈[0,2π),函數(shù)f(x)=cos$\frac{1}{2}$(x+a)是奇函數(shù),則a的值為( 。
A.0B.$\frac{π}{2}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.不等式(x2+1)(-2x2-x+1)≤0的解集是(-∞,-1]∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1中,AB=AC=AA1=4,BC=2$\sqrt{2}$,BD⊥AC,垂足為D,E為棱BB1上一點(diǎn),BD∥平面AC1E.
(Ⅰ)求線段B1E的長;
(Ⅱ)求二面角C1-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的前n項(xiàng)和Sn=27-33-n,則數(shù)列{anan+1an+2}的前3項(xiàng)和等于( 。
A.216B.224C.$\frac{6056}{27}$D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{2sin2x+cos4x-1}{2sin2x}$.
(1)求函數(shù)f(x)的定義域;
(2)化簡函數(shù)式,并求出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則向量2$\overrightarrow{a}$+3$\overrightarrow$在向量2$\overrightarrow{a}$+$\overrightarrow$方向上的投影為( 。
A.$\frac{19\sqrt{13}}{13}$B.$\frac{6\sqrt{13}}{13}$C.$\frac{5\sqrt{6}}{6}$D.$\frac{8\sqrt{3}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)化簡:$\frac{\sqrt{1+2sin(-θ)cos(2π-θ)}}{sin(-6π+θ)-cos(-θ+4π)}$   (θ為第三象限角)
(2)求值:sin420°cos(-330°)+sin(-690°)cos(-660°)

查看答案和解析>>

同步練習(xí)冊答案