9.若二次函數(shù)y=ax2+bx+c的圖象不過第四象限且對稱軸在y軸左邊那么a,b,c的取值可以為( 。
A.a>0,b>0,c≥0.B.a>0,b<0,c≤0C.a<0,b>0,c≥0D.a<0,b<0,c≤0

分析 結(jié)合題意知二次函數(shù)的圖象開口向上,且-$\frac{2a}$<0,從而判斷.

解答 解:∵二次函數(shù)y=ax2+bx+c的圖象不過第四象限,
∴a>0,
又∵對稱軸在y軸左邊,
∴-$\frac{2a}$<0,
∴b>0,
∴與y軸的交點不在x軸下方,
∴c≥0,
故選A.

點評 本題考查了二次函數(shù)的性質(zhì)的判斷與二次函數(shù)的圖象的應(yīng)用,同時考查了數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知a2,b2,c2成等差數(shù)列,則cosB的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}的首項a1=1.
(1)若an+1=an+n+1,則an=$\frac{n(n+1)}{2}$;
(2)若an+1=2n•an,則an=${2}^{\frac{n(n-1)}{2}}$;
(3)若an=3an-1+3n(n≥2),則an=$(n-\frac{2}{3})•{3}^{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x+2)是偶函數(shù),且當(dāng)x>2時滿足xf′(x)>2f′(x)+f(x),則( 。
A.2f(1)<f(4)B.2f($\frac{3}{2}$)<f(4)C.f(0)<4f($\frac{5}{2}$)D.f(1)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.不解三角形,判斷下列三角形解的個數(shù).
(1)a=5,b=4,A=120°;
(2)a=9,b=10,A=60°;
(3)c=50,b=72,C=135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)f(x)=(m-2)x2-(m2-4)x+2的圖象關(guān)于y軸對稱,求f(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在正方形AG1G2G3中,點B,C分別是G1G2,G2G3的中點,點E,F(xiàn)分別是G3C,AC的中點,現(xiàn)在沿AB,BC及AC把這個正方形折成一個四面體,使G1,G2,G3三點重合,重合后記為G.
(I)判斷在四面體GABC的四個面中,哪些面的三角形是直角三角形,若是直角三角形,寫出其直角(只需寫出結(jié)論);
(Ⅱ)請在四面體GABC的直觀圖中標(biāo)出點E,F(xiàn),并求證:EF∥平面ABG;
(Ⅲ)求證:平面EFB⊥平面GBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)的定義域是[0,4],則函數(shù)f(2x-3)的定義域是$[{\frac{3}{2},\frac{7}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將函數(shù)y=msinx(其中m≠0)的圖象上的所有點向左平移$\frac{π}{6}$個單位,再將所得圖象上所有點的橫坐標(biāo)壓縮到原來的$\frac{1}{2}$倍,縱坐標(biāo)保持不變,得到了函數(shù)y=f(x)的圖象.
(1)寫出函數(shù)f(x)的表達(dá)式;
(2)當(dāng)m=$\frac{1}{2}$時,求函數(shù)f(x)的最小正周期及對稱中心;
(3)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時,函數(shù)f(x)的最大值為2,試求函數(shù)f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊答案