17.在等差數(shù)列{an}中,a2+a9=6,則此數(shù)列前10項(xiàng)的和是30.

分析 由等差數(shù)列{an}的性質(zhì)可得:a2+a9=a1+a10,再利用前n項(xiàng)和公式即可得出.

解答 解:由等差數(shù)列{an},a2+a9=6,
∴a1+a10=6,
∴此數(shù)列前10項(xiàng)的和S10=$\frac{10({a}_{1}+{a}_{10})}{2}$=5×6=30.
故答案為:30.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列有關(guān)命題的說(shuō)法中錯(cuò)誤的是(  )
A.若“p∧q”為真命題,則p、q均為真命題
B.命題“若am2<bm2,則a<b”,的逆命題是假命題
C.若命題p:“?x∈R,x2≥0”則命題¬p為“?x∈R,x2<0”
D.“p或q”是假命題,“非p”是真命題,則q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=3$,∠A=45°,M為BC邊上的中點(diǎn),分別求下列各式的值:
(1)$\overrightarrow{AB}$•$\overrightarrow{AC}$,
(2)$\overrightarrow{AB}$•$\overrightarrow{BC}$,
(3)$\overrightarrow{AB}$•$\overrightarrow{AM}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=($\frac{1}{2}$sin2x,cos2x-$\frac{1}{2}$),$\overrightarrow$=(sinφ,cosφ),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$(0<φ<π),其圖象過(guò)點(diǎn)($\frac{π}{8}$,$\frac{1}{2}$)
(1)求φ的值和f(x)的圖象的對(duì)稱中心;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=\sqrt{3}sin2x+2{cos^2}x+3$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在$[0,\frac{π}{2}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知O為銳角三角形ABC的外心,∠B=30°,$\frac{cosA}{sinC}$$\overrightarrow{BA}$+$\frac{cosC}{sinA}$$\overrightarrow{BC}$=2m$\overrightarrow{OB}$,則實(shí)數(shù)m的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.定義在R上的函數(shù)f(x)=$\frac{x}{{{x^2}+1}}$,若函數(shù)g(x)=f(x)+$\frac{mx}{1+x}$在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)求不等式的解集:|x-1|+|x+3|≥2.
(2)不等式|x-1|+|x+3|>a,對(duì)一切實(shí)數(shù)x都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知關(guān)于x的不等式|x-3|+|x-5|≤m的解集不是空集,記m的最小值為t.
(Ⅰ)求t;
(Ⅱ)已知a>0,b>0,c=max{$\frac{1}{a}$,$\frac{{{a^2}+{b^2}}}{tb}$},求證:c≥1.注:maxA表示數(shù)集A中的最大數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案