分析 根據(jù)全稱命題否定的方法,可得¬p,再由向量垂直的充要條件,可得答案.
解答 解:∵在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2),Q(cosx,-1),
命題p:?x∈[0,π],$\overrightarrow{OP}$與$\overrightarrow{OQ}$都不垂直.
∴命題¬p為:?x∈[0,π],使得$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$.
∵$\overrightarrow{OP}$•$\overrightarrow{OQ}$=(2cosx+1)cosx-(2cos2x+2)=-2cos2x+cosx,
當(dāng)x=$\frac{π}{3}$時(shí),cosx=$\frac{1}{2}$,$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,
故¬p為真命題;
點(diǎn)評 本題考查的知識點(diǎn)是全稱命題否定的方法,命題的真假判斷與應(yīng)用,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | { x|0≤x≤2} | B. | { x|1≤x≤2} | C. | {1,2 } | D. | Φ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,4] | B. | [2,4] | C. | [1,3] | D. | [2,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{81}$ | B. | -$\frac{1}{81}$ | C. | $\frac{1}{27}$ | D. | -$\frac{1}{27}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com