18.f(x)=ax2+bx+c滿足f(0)=3,對稱軸是直線x=-1,最小值為2,則該函數(shù)的表達式為( 。
A.f(x)=x2-2x-3B.f(x)=x2+2x-3C.f(x)=x2-2x+3D.f(x)=x2+2x+3

分析 由二次函數(shù)f(x)=ax2+bx+c的對稱軸直線x=-1,最小值為2,可得此二次函數(shù)的頂點坐標,然后利用頂點式求解即可.

解答 解:∵二次函數(shù)f(x)=ax2+bx+c的對稱軸為x=-1,最小值為2,
∴此二次函數(shù)的頂點坐標為:(-1,2),
∴此二次函數(shù)為:f(x)=a(x+1)2+2,
∵f(0)=3,∴a+2=3,
解得:a=1,
∴此二次函數(shù)的解析式為:f(x)=(x+1)2+2=x2+2x+3.
故選:D.

點評 此題考查了待定系數(shù)法求函數(shù)的解析式.此題難度不大,注意掌握方程思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.高為2的圓柱側(cè)面積為4π,此圓柱的體積為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=1g(x+1)+x-3的零點為x0,滿足x0∈(k,k+1)且k∈Z,則k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln$\frac{1+x}{1-x}$.
(1)求函數(shù)f(x)的定義域;
(2)求使函數(shù)f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(α)=$\frac{sin(π-α)cos(2π-α)}{cos(-α-π)tan(π+α)}$ 其中α是第三象限角.
(1)化簡f(α);
(2)若cos{$α-\frac{3π}{2}$)=$\frac{1}{5}$,求f(α);
(3)若α=-1860°,求f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知 f(x)=2+1og2x,x∈[1,4].求y=[f(x)]2-2f(x)的最大值及此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.觀察正切函數(shù)的圖象,滿足|tanx|≤1的x的取值范圍是 ( 。
A.[2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$](k∈Z)B.[kπ,kπ+$\frac{π}{4}$](k∈Z)
C.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)D.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知四棱錐P-ABCD中,底面ABCD為∠ABC=$\frac{2}{3}$π的菱形,PA⊥平面ABCD,點Q在直線PA上.
(1)證明直線QC⊥直線BD;
(2)若二面角B-QC-D的大小為$\frac{2π}{3}$,點M為BC的中點,求直線QM與AB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若x>1,則函數(shù)y=$\frac{{{x^2}+x+2}}{x-1}$的最小值為(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案