11.橢圓$\frac{x^2}{9}+\frac{y^2}{2}=1$的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則|PF2|=4;${S_{△P{F_1}{F_2}}}$的大小為4$\sqrt{3}$.

分析 第一問用定義法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二問如圖所示:角所在三角形三邊已求得,用余弦定理求解得∠F1PF2=120°,再利用面積公式即可.

解答 解:∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=2.
在△F1PF2中,cos∠F1PF2=$\frac{16+4-28}{2×4×2}$=-$\frac{1}{2}$,
∴∠F1PF2=120°
∴${S_{△P{F_1}{F_2}}}$=$\frac{1}{2}×2×4×\frac{\sqrt{3}}{2}$=4$\sqrt{3}$.
故答案為:2;4$\sqrt{3}$.

點評 本題主要考查橢圓定義的應(yīng)用及焦點三角形問題,這類題是?碱愋,難度不大,考查靈活,特別是對曲線的定義和性質(zhì)考查的很到位.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列有關(guān)命題的敘述,
①若p∨q為真命題,則p∧q為真命題;
②“x>5”是“x2-4x-5>0”的充分不必要條件;
③“若x+y=0,則x,y互為相反數(shù)”的逆命題為真命題;
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”.
其中錯誤的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x、y滿則$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的2倍,則a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)$f(x)=a{log_2}x+a•{4^x}+3$在區(qū)間$(\frac{1}{2},1)$上有零點,則實數(shù)a的取值范圍是( 。
A.a<-3B.$-\frac{3}{2}<a<-\frac{3}{4}$C.$-3<a<-\frac{3}{4}$D.$-\frac{3}{2}<a<-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+cosα}\\{y=8+sinα}\end{array}\right.$(α為參數(shù));若以O(shè)為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為ρsin(θ-$\frac{π}{3}$)=$\frac{1}{2}$.
(1)求曲線C1和C2的直角坐標(biāo)方程;
(2)在C2上是否存在點P,過P作C1的兩條切線,切點為A,B,使得△ABP為等邊三角形?若存在求出P點坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)半徑為3的圓C被直線l:x+y-4=0截得的弦AB的中點為P(3,1),且弦長$|{AB}|=2\sqrt{7}$,則圓C的標(biāo)準(zhǔn)方程(x-4)2+(y-2)2=9,或(x-2)2+y2=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,已知曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ,
直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-2-t}\\{y=m+t}\end{array}\right.$(t為參數(shù)),曲線C上至少3個點到直線l的距離等于$\frac{\sqrt{2}}{2}$.
(I)將直線l的參數(shù)方程化為普通方程,將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知方程$\frac{{x}^{2}}{5-k}$+$\frac{{y}^{2}}{k-1}$=1表示焦點在x軸上的橢圓,則k的取值范圍是1<k<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過點M(3,-1)且被點M平分拋物線y2=4x的弦所在的直線方程2x+y-5=0.

查看答案和解析>>

同步練習(xí)冊答案