12.對(duì)于實(shí)數(shù)x,記[x]表示不超過(guò)x的最大整數(shù),如[3.14]=3,[-0.25]=-1.若存在實(shí)數(shù)t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同時(shí)成立,則正整數(shù)n的最大值為4.

分析 由新定義可得t的范圍,驗(yàn)證可得最大的正整數(shù)n為4.

解答 解:若[t]=1,則t∈[1,2),
若[t2]=2,則t∈[$\sqrt{2}$,$\sqrt{3}$)(因?yàn)轭}目需要同時(shí)成立,則負(fù)區(qū)間舍去),
若[t3]=3,則t∈[$\root{3}{3}$,$\root{3}{4}$),
若[t4]=4,則t∈[$\root{4}{4}$,$\root{4}{5}$),
若[t5]=5,則t∈[$\root{5}{5}$,$\root{5}{6}$),
其中$\sqrt{3}$≈1.732,$\root{3}{3}$≈1.587,$\root{4}{5}$≈1.495,$\root{5}{6}$≈1.431<1.495,
通過(guò)上述可以發(fā)現(xiàn),當(dāng)t=4時(shí),可以找到實(shí)數(shù)t使其在區(qū)間[1,2)∩[$\sqrt{2}$,$\sqrt{3}$)
∩[$\root{3}{3}$,$\root{3}{4}$)∩[$\root{4}{4}$,$\root{4}{5}$)上,
但當(dāng)t=5時(shí),無(wú)法找到實(shí)數(shù)t使其在區(qū)間[1,2)∩[$\sqrt{2}$,$\sqrt{3}$)∩[$\root{3}{3}$,$\root{3}{4}$)∩[$\root{4}{4}$,$\root{4}{5}$)
∩[$\root{5}{5}$,$\root{5}{6}$)上,
∴正整數(shù)n的最大值4.
故答案為:4.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的演繹推理,涉及新定義的理解和運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某幾何體的三視圖,如圖所示,則該幾何體的體積為(  )
A.7-$\frac{π}{4}$B.7-$\frac{π}{2}$C.6-$\frac{π}{2}$D.6-π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)f(x)=ax5+bx3+cx+7(其中a,b,c為常數(shù),x∈R),若f(-2015)=-17,則f(2015)=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若$2\overrightarrow{OC}={a_4}\overrightarrow{OA}+{a_8}\overrightarrow{OB}$,且A,B,C三點(diǎn)不共線(該直線不過(guò)O點(diǎn)),則S11=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,$\frac{AN}{NC}=\frac{BM}{{M{C_1}}}=3$.
(Ⅰ)求MN的長(zhǎng);
(Ⅱ)求異面直線D1M與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知點(diǎn)P是第三象限角α終邊上一點(diǎn),且其橫坐標(biāo)x=-3,|OP|=5,求角α的正弦、余弦、正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在等差數(shù)列{an}中,a1+a2=5,a3=7,記數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)求Sn,求證:Sn≤$\frac{1}{3}$;   
(3)是否存在正整數(shù)m、n,且1<m<n,使得1、Sm、Sn成等比數(shù)列?若存在,求出所有符合條件的m、n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在平面內(nèi)有下面關(guān)于直角三角形邊長(zhǎng)的勾股定理定理:直角三角形ABC中,AC⊥BC,則有AB2=AC2+BC2.將它類比到空間中關(guān)于直角三棱錐的面積的命題應(yīng)該是:若三棱錐P-ABC中,PA⊥PB,PB⊥PC,PC⊥PA;則有${{S}^{2}}_{△ABC}={{S}^{2}}_{△PAB}+{{S}^{2}}_{△PBC}+{{S}^{2}}_{△PCA}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知直線l經(jīng)過(guò)橢圓$\frac{x^2}{169}$+$\frac{y^2}{144}$=1的右焦點(diǎn),與橢圓交于A(x1,y1)、B(x2,y2),若x1+x2=1,則直線l的方程為(  )
A.4x-13y-20=0或4x+13y-20=0B.2x-3y-10=0或2x+3y-10=0
C.6x+5y-30=0或6x-5y-30=0D.4x+9y-20=0或2x+3y-10=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案