分析 由新定義可得t的范圍,驗(yàn)證可得最大的正整數(shù)n為4.
解答 解:若[t]=1,則t∈[1,2),
若[t2]=2,則t∈[$\sqrt{2}$,$\sqrt{3}$)(因?yàn)轭}目需要同時(shí)成立,則負(fù)區(qū)間舍去),
若[t3]=3,則t∈[$\root{3}{3}$,$\root{3}{4}$),
若[t4]=4,則t∈[$\root{4}{4}$,$\root{4}{5}$),
若[t5]=5,則t∈[$\root{5}{5}$,$\root{5}{6}$),
其中$\sqrt{3}$≈1.732,$\root{3}{3}$≈1.587,$\root{4}{5}$≈1.495,$\root{5}{6}$≈1.431<1.495,
通過(guò)上述可以發(fā)現(xiàn),當(dāng)t=4時(shí),可以找到實(shí)數(shù)t使其在區(qū)間[1,2)∩[$\sqrt{2}$,$\sqrt{3}$)
∩[$\root{3}{3}$,$\root{3}{4}$)∩[$\root{4}{4}$,$\root{4}{5}$)上,
但當(dāng)t=5時(shí),無(wú)法找到實(shí)數(shù)t使其在區(qū)間[1,2)∩[$\sqrt{2}$,$\sqrt{3}$)∩[$\root{3}{3}$,$\root{3}{4}$)∩[$\root{4}{4}$,$\root{4}{5}$)
∩[$\root{5}{5}$,$\root{5}{6}$)上,
∴正整數(shù)n的最大值4.
故答案為:4.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的演繹推理,涉及新定義的理解和運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7-$\frac{π}{4}$ | B. | 7-$\frac{π}{2}$ | C. | 6-$\frac{π}{2}$ | D. | 6-π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4x-13y-20=0或4x+13y-20=0 | B. | 2x-3y-10=0或2x+3y-10=0 | ||
C. | 6x+5y-30=0或6x-5y-30=0 | D. | 4x+9y-20=0或2x+3y-10=0. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com