15.為了解某學(xué)校參加市期末聯(lián)考水平測試的2000名學(xué)生的成績,從中抽取了200名學(xué)生的成績進(jìn)行統(tǒng)計分析,在這個問題中,2000名學(xué)生成績的全體是( 。
A.樣本的容量B.個體
C.總體D.總體中抽取的樣本

分析 在統(tǒng)計里面,把所要考察對象的全體稱為總體.

解答 解:由總體的定義知,
2000名學(xué)生成績的全體是總體.
故選:C.

點(diǎn)評 本題考查了統(tǒng)計里面的概念區(qū)分問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)在R上有定義,且滿足f(x)+xf(1-x)=x.
(1)試求f(x)的解析式;
(2)若f(x)>a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知△ABC的兩個頂點(diǎn)A,B的坐標(biāo)分別為(-1,0),(1,0),且AC、BC所在直線的斜率之積等于-2,記頂點(diǎn)C的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)直線y=2x+m(m∈R且m≠0)與曲線E相交于P、Q兩點(diǎn),點(diǎn)M($\frac{1}{2}$,1),求△MPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=loga(x+b)(a>0,a≠1,b∈R)的圖象如圖所示,則a•b的值是3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x2+(m-3)x+m在[2,+∞)上單調(diào)遞增,則實數(shù)m的取值范圍是( 。
A.m≤-1B.m<-1C.m≥-1D.m>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{m}$=(x,x+2)與向量$\overrightarrow{n}$=(1,3x)是共線向量,則x等于( 。
A.$\frac{2}{3}$或-1B.-$\frac{2}{3}$或1C.$\frac{3}{2}$或-1D.-$\frac{3}{2}$或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,既是奇函數(shù)又是單調(diào)遞增函數(shù)的是( 。
A.y=exB.y=lnxC.y=$\frac{1}{x}$D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若$p:({x^2}+6x+8)\sqrt{x+3}≥0$;q:x=-3,則命題p是命題q的必要而不充分條件 (填“充分而不必要、必要而不充分、充要、既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,曲線C1:(x-2)2+y2=4,曲線C2:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C1,C2的極坐標(biāo)方程;
(Ⅱ)在(Ⅰ)的極坐標(biāo)系中,射線θ=$\frac{π}{3}$與曲線C1,C2分別交于A,B兩點(diǎn),定點(diǎn)M(4,0),求△MAB的面積.

查看答案和解析>>

同步練習(xí)冊答案