7.兩座燈塔A和B與海岸觀察站C的距離都等于a海里,燈塔A在觀測(cè)站C北偏東75°的方向上,燈塔B在觀測(cè)站C的東南方向,則燈搭A(yù)和B之間的距離為( 。
A.a海里B.$\sqrt{2}$a海里C.$\sqrt{3}$a海里D.2a海里

分析 由方位角可得∠BCA=60°,判斷出△ABC是等邊三角形.

解答 解:∵∠NCA=75°,∠BCE=45°,∴∠BCA=60°,
∵AC=BC=a,∴△ABC是等邊三角形,∴AB=a.
故選:A.

點(diǎn)評(píng) 本題考查了解三角形的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋物線y=4x2的準(zhǔn)線方程為( 。
A.x=-1B.y=-1C.x=-$\frac{1}{16}$D.y=-$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=sinx(sinx+cosx)+cos2x.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列命題中,真命題的是( 。
A.若a>b,c>d,則a-c>b-dB.若a>b,c>d,則ac>bd
C.若$\frac{1}{a}$<$\frac{1}$<0,則ab<b2D.若$\frac{a}$>$\frac{b-1}{a-1}$,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某人上午7時(shí),乘摩托艇從A港出發(fā)前往B港,所需時(shí)間x至少為3小時(shí),至多為10小時(shí),然后從B港乘汽車前往C市,所需時(shí)間y至少為2.5小時(shí),至多為12.5小時(shí),且要求到達(dá)C市的時(shí)間為同一天下午4時(shí)至9時(shí)之間,若從A港到C市所需要的經(jīng)費(fèi)ω=100+3(5-x)+2(8-y)元,則所需經(jīng)費(fèi)的最小值為93(元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.拋物線y2=x的焦點(diǎn)F坐標(biāo)為($\frac{1}{4}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線y=k(x-1)+2與拋物線x2=4y的位置關(guān)系為(  )
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,AD⊥平面APB,AD∥BC,AP⊥PB,R、S分別是線段AB、PC的中點(diǎn).
(1)求證:RS∥平面PAD;
(2)若AB=BC=2AD=2AP,點(diǎn)Q在線段AB上,且BQ=3AQ,求證:平面DPQ⊥平面ADQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.把邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折起,使得平面ABD⊥平面CBD.則異面直線AD,BC所成的角為60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案