10.函數(shù)f(x)=sinxsin(x+$\frac{π}{3}$)+sin2x,x∈(-$\frac{π}{2}$,$\frac{π}{4}$)的值域?yàn)閇$\frac{3-2\sqrt{3}}{4}$,$\frac{3+2\sqrt{3}}{4}$].

分析 化簡可得f(x)=$\frac{3}{4}$+$\frac{\sqrt{3}}{2}$sin(2x-$\frac{π}{3}$),由三角函數(shù)的知識(shí)可得值域.

解答 解:化簡可得f(x)=sinxsin(x+$\frac{π}{3}$)+sin2x
=sinx($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)+sin2x
=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$sinxcosx+sin2x
=$\frac{3}{2}$•$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{4}$sin2x
=$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$sin2x-$\frac{3}{4}$cos2x
=$\frac{3}{4}$+$\frac{\sqrt{3}}{2}$($\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x)
=$\frac{3}{4}$+$\frac{\sqrt{3}}{2}$sin(2x-$\frac{π}{3}$),
∴函數(shù)的值域?yàn)閇$\frac{3-2\sqrt{3}}{4}$,$\frac{3+2\sqrt{3}}{4}$],
故答案為:[$\frac{3-2\sqrt{3}}{4}$,$\frac{3+2\sqrt{3}}{4}$].

點(diǎn)評 本題考查三角函數(shù)恒等變換,涉及三角函數(shù)的值域,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若$2\overrightarrow{OC}={a_4}\overrightarrow{OA}+{a_8}\overrightarrow{OB}$,且A,B,C三點(diǎn)不共線(該直線不過O點(diǎn)),則S11=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面內(nèi)有下面關(guān)于直角三角形邊長的勾股定理定理:直角三角形ABC中,AC⊥BC,則有AB2=AC2+BC2.將它類比到空間中關(guān)于直角三棱錐的面積的命題應(yīng)該是:若三棱錐P-ABC中,PA⊥PB,PB⊥PC,PC⊥PA;則有${{S}^{2}}_{△ABC}={{S}^{2}}_{△PAB}+{{S}^{2}}_{△PBC}+{{S}^{2}}_{△PCA}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},則 (∁RA)∩B={2<x<3或7≤x<10}.若A⊆C,則a的取值范圍是a≥7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的左、右兩個(gè)焦點(diǎn)分別為F1、F2,A為橢圓的右頂點(diǎn),點(diǎn)P在橢圓上且∠PF1F2=arccos$\frac{7}{8}$
(1)計(jì)算|PF1|的值x
(2)求△PF1A的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)($\frac{\sqrt{2}}{2}$+x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,已知焦點(diǎn)在x軸上的橢圓的長軸長與離心率分別為$\frac{2}{5}$a3與$\frac{1}{6}$a5
(1)求此橢圓的標(biāo)準(zhǔn)方程.
(2)F1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),P為橢圓上一點(diǎn),與橢圓同一平面上的點(diǎn)M滿足:$\overrightarrow{MP}$=3$\overrightarrow{P{F}_{2}}$,$\overrightarrow{{F}_{1}M}$•$\overrightarrow{P{F}_{1}}$+$\overrightarrow{{F}_{1}M}$•$\overrightarrow{PM}$=0,求|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線l經(jīng)過橢圓$\frac{x^2}{169}$+$\frac{y^2}{144}$=1的右焦點(diǎn),與橢圓交于A(x1,y1)、B(x2,y2),若x1+x2=1,則直線l的方程為( 。
A.4x-13y-20=0或4x+13y-20=0B.2x-3y-10=0或2x+3y-10=0
C.6x+5y-30=0或6x-5y-30=0D.4x+9y-20=0或2x+3y-10=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,$∠AOB=\frac{2π}{3}$,$\overrightarrow{OP}$=$2\overrightarrow{OA}+t\overrightarrow{OB}$,則$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范圍$(-\frac{1}{2},1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.(文)函數(shù)y=cos2ax-sin2ax的最小正周期為π,則a的值是±1.

查看答案和解析>>

同步練習(xí)冊答案