精英家教網 > 高中數學 > 題目詳情
17.下列語句中,不是命題的語句是( 。
A.12>5B.若a為正無理數,則$\sqrt{a}$也是正無理數
C.正弦函數是周期函數嗎?D.π∈{1,2,3,4}

分析 直接利用命題的定義判斷選項即可.

解答 解:根據命題的定義,能夠判斷真假的陳述句,選項C正弦函數是周期函數嗎?不是陳述句.
故選:C.

點評 本題考查命題的真假的判斷,定義的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

7.如圖,在矩形ABCD中,AB=8,BC=4,E為DC邊的中點,沿AE將△ADE折起,在折起過程中,有幾個正確( 。
①ED⊥平面ACD   ②CD⊥平面BED    ③BD⊥平面ACD   ④AD⊥平面BED.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.下列選項中,滿足焦點在y軸上且離心率為$\sqrt{3}$的雙曲線的標準方程為(  )
A.$\frac{x^2}{2}-{y^2}=1$B.${y^2}-\frac{x^2}{2}=1$C.${x^2}-{\frac{y}{2}^2}=1$D.$\frac{y^2}{2}-{x^2}=1$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.方程(t-2)x2+(3-t)y2=(t-2)(3-t)(t∈R)表示雙曲線的充要條件是t>3或t<2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知cos(α-β)=cosαcosβ+sinαsinβ,向量$\overrightarrow$為單位向量,向量$\overrightarrow{{a}_{n}}$=(cos$\frac{nπ}{7}$,sin$\frac{nπ}{7}$)(n∈N*),則|$\overrightarrow{{a}_{1}}$+$\overrightarrow$|2+|$\overrightarrow{{a}_{2}}$+$\overrightarrow$|2+|$\overrightarrow{{a}_{3}}$+$\overrightarrow$|2+…+|$\overrightarrow{{a}_{141}}$+$\overrightarrow$|2的最大值為( 。
A.284B.285C.286D.287

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知m,n為兩條不同直線,α,β為兩個不同平面,給出下列命題:
①$\left\{\begin{array}{l}m⊥α\\ m⊥n\end{array}\right.⇒n∥α$②$\left\{\begin{array}{l}m⊥β\\ n⊥β\end{array}\right.⇒n∥m$③$\left\{\begin{array}{l}m⊥α\\ m⊥β\end{array}\right.⇒β∥α$④$\left\{\begin{array}{l}m?α\\ n?β\\ α∥β\end{array}\right.⇒m∥n$,
其中正確的序號是②③.(填上你認為正確的所有序號)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.某市出租車的計價標準是:4km以內(含4km)10元,超過4km且不超過18km的部分1.2元/km,超過18km的部分1.8元/km,不計等待時間的費用.
(1)如果某人乘車行駛了10km,他要付多少車費?
(2)試建立車費y(元)與行車里程x(km)的函數關系式.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知函數f(x)=$\left\{\begin{array}{l}{x-3,x≤1}\\{xlnx-kx+2k,x>1}\end{array}\right.$在R上為增函數,則實數k的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.己知函數f(x)=ex-x2+a,x∈R,曲線y=f(x)的圖象在點(0,f(0))處的切線方程為y=bx.
(I)求函數f(x)的解析式:
(Ⅱ)當x∈R時,求證;f(x)≥-x2+x;
(Ⅲ)若f(x)>kx對任意的x∈(0,+∞)恒成立,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案