A. | -$\frac{21}{8}$ | B. | $\frac{21}{8}$ | C. | -9 | D. | 9 |
分析 由數(shù)列遞推式可得數(shù)列{an}是等比數(shù)列,設(shè)公比為q,由64a10-a4=0求得公比,再結(jié)合等比數(shù)列的前n項和公式得答案.
解答 解:由$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n+2}}{{a}_{n+1}}$,得${{a}_{n+1}}^{2}={a}_{n}{a}_{n+2}$,
∴數(shù)列{an}是等比數(shù)列,設(shè)公比為q,
則${a}_{10}={a}_{4}{q}^{6}$,代入64a10-a4=0,
得$64{a}_{4}{q}^{6}-{a}_{4}=0$,即$q=\frac{1}{2}$.
則${S}_{6}=\frac{{a}_{1}(1-\frac{1}{{2}^{6}})}{1-\frac{1}{2}}=2{a}_{1}(1-\frac{1}{{2}^{6}})$,
${S}_{3}=\frac{{a}_{1}(1-\frac{1}{{2}^{3}})}{1-\frac{1}{2}}=2{a}_{1}(1-\frac{1}{{2}^{3}})$,
∴$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$=$\frac{2{a}_{1}(1-\frac{1}{{2}^{6}})}{{a}_{1}-2{a}_{1}(1-\frac{1}{{2}^{3}})}=-\frac{21}{8}$.
故選:A.
點評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,考查了等比數(shù)列的前n項和,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向右平移$\frac{π}{12}$個單位 | B. | 向左平移$\frac{π}{12}$個單位 | ||
C. | 向右平移$\frac{π}{3}$個單位 | D. | 向左平移$\frac{π}{3}$個單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com