17.若f(x)=($\frac{1}{{e}^{x}-1}$+$\frac{1}{2}$)+x,則函數(shù)f(x)的圖象是(  )
A.B.C.D.

分析 根據(jù)函數(shù)的值域,單調(diào)性判斷.

解答 解:由函數(shù)有意義得ex-1≠0,即x≠0.排除B.
當(dāng)x>0時(shí),ex>1,∴f(x)=($\frac{1}{{e}^{x}-1}$+$\frac{1}{2}$)+x>0,排除D.
當(dāng)x<0時(shí),0<ex<1,∴$\frac{1}{{e}^{x}-1}$+$\frac{1}{2}$<-$\frac{1}{2}$.∴f(x)=($\frac{1}{{e}^{x}-1}$+$\frac{1}{2}$)+x<0.排除C.
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)圖象的判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位得到函數(shù)f(x)的圖象,則f(x)=(  )
A.cos2xB.sin(2x+$\frac{π}{4}$)C.-cos2xD.-sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx+x,g(x)=$\frac{1}{2}$mx2+mx-1(m為整數(shù)).
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)y=f(x)的圖象始終在函數(shù)y=g(x)圖象的下方,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=x|x-a|(a>0)在區(qū)間[1,2]上的最小值為2,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,M,N是函數(shù)y=2sin(ωx+ϕ)(ω>0)圖象與x軸的交點(diǎn),點(diǎn)P在M,N之間的圖象上運(yùn)動(dòng),當(dāng)△MPN面積最大時(shí),PM⊥PN,則ω=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了解我市高三學(xué)生參加體育活動(dòng)的情況,市直屬某校高三學(xué)生500人參加“體育基本素質(zhì)技能”比賽活動(dòng),按某項(xiàng)比賽結(jié)果所在區(qū)間分組:第1組:[25,300,第2組:[30,35),第3組:[35,40),第4組:[40,45),第5組:[45,50],得到不完整的人數(shù)統(tǒng)計(jì)表如下:
年齡所在區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5050a150b
其頻率分布直方圖為:
(1)求人數(shù)統(tǒng)計(jì)表中的a和b的值;
(2)根據(jù)頻率分布直方圖,估計(jì)該項(xiàng)比賽結(jié)果的中位數(shù);
(3)用分層抽樣的方法從第1,2,3組中共抽取6人,再從這6人中隨機(jī)抽取2人參加上一級(jí)比賽活動(dòng),求參加上一級(jí)比賽活動(dòng)中至少有1人的比賽結(jié)果在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,橢圓$C:\frac{x^2}{25}+\frac{y^2}{9}=1$的左、右焦點(diǎn)分別是F1,F(xiàn)2,P為橢圓C上的一點(diǎn),且PF1⊥PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)D為不等式組$\left\{\begin{array}{l}x≥0\\ x-y≤0\\ 2x+y-3≤0\end{array}\right.$表示的平面區(qū)域,圓C:(x-5)2+y2=1上的點(diǎn)與區(qū)域D上的點(diǎn)之間的距離的取值范圍是(  )
A.[$\frac{5\sqrt{2}}{2}$-1,$\sqrt{34}+1$)B.[$\sqrt{17}-1$,$\sqrt{34}+1$]C.[$\sqrt{17}$,$\sqrt{34}$]D.[$\sqrt{17}$-1,$\sqrt{34}$-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM,N是AM上任一點(diǎn).
(1)求證:DM⊥BM;
(2)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),二面角E-AM-D的余弦值$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案