20.在四棱錐P-ABCD中,AD∥BC,∠ABC=∠APB=90°,點M是線段AB上的一點,且PM⊥CD,AB=BC=2PB=2AD=4BM.
(1)證明:平面PAB⊥平面ABCD;
(2)求平面ABCD與平面PCD所成的銳二面角的余弦值.

分析 (1)由已知條件推導(dǎo)出PM⊥AB,從而得到PM⊥面ABCD,由此能證明面PAB⊥面ABCD.
(2)根據(jù)二面角的定義,作出二面角的平面角,結(jié)合三角形的邊角關(guān)系進行求解即可.

解答 (1)證明:∵AB=2PB=4BM,∴PM⊥AB,
又∵PM⊥CD,且AB∩CD,
∴PM⊥面ABCD,
∵PM?面PAB.∴面PAB⊥面ABCD.
(2)過點M作MH⊥CD,連結(jié)HP,
∵PM⊥CD,且PM∩MH=M,
∴CD⊥平面PMH,
∴CD⊥PH,
則∠PHM是二面角平面PCD與平面ABCD所成角的平面角,
在四棱錐P-ABCD中,設(shè)AB=2t,
則DM=$\frac{\sqrt{13}}{2}$t,PM=$\frac{\sqrt{3}}{2}$t,MH=$\frac{7\sqrt{5}}{10}$t,
∴PH=$\frac{4\sqrt{5}}{5}$t,
從而cos∠PHM=$\frac{HM}{PH}$=$\frac{\frac{7\sqrt{5}}{10}t}{\frac{4\sqrt{5}}{5}t}$=$\frac{7}{8}$,
即平面ABCD與平面PCD所成的銳二面角的余弦值是$\frac{7}{8}$.

點評 本題考查平面與平面垂直的證明,考查二面角的求法,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).利用定義法作出二面角的平面角是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)=2sinxcosx-2\sqrt{3}{cos^2}x+\sqrt{3}$的圖象為
①圖象C關(guān)于直線$x=\frac{11π}{12}$對稱;
②函數(shù)f(x)在區(qū)間$(-\frac{π}{12},\frac{5π}{12})$內(nèi)是增函數(shù);
③由y=2sin2x的圖象向右平移$\frac{π}{3}$個單位長度可以得到圖象C;
以上三個論斷中,正確論斷的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程3x2+y2=3x-2y的非負(fù)整數(shù)解(x,y)的組數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.從裝有2只紅球、2只白球和1只黑球的袋中逐一取球,每只球被抽取的可能性相同.
(1)若抽取后又放回,抽3次,分別求恰好2次為紅球的概率及抽全三種顏色球的概率;
(2)若抽取后不放回,求抽完紅球所需次數(shù)不少于4次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合S={1,2,a},T={2,3,4,b},若S∩T={1,2,3},則a-b=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,其兼具文化性和社會性,是精神文明建設(shè)成果的一個重要指標(biāo)和象征.2015年某高校社會實踐小組對某小區(qū)跳廣場舞的人的年齡進行了凋查,隨機抽取了40名廣場舞者進行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.
(1)估計在40名廣場舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場舞者年齡的中位數(shù)和平均數(shù)的估計值;
(3)若從年齡在[20,40)中的廣場舞者中任取2名,求這兩名廣場舞者年齡在[30,40)中的人數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.2015年12月27日全國人大常委會會議通過了關(guān)于修教口與計劃生育法的決定,“全面二孩”從2016年元旦起開給實施.A市婦聯(lián)為了解該市市民對“全面二孩”政策的態(tài)度,隨機抽取了男性市民45人、女性市民55人進行調(diào)查,得到以下2×2列聯(lián)表.
  支持反對 合計 
男性 30 15 45
 女性 45 10 55
 合計 75 25 100
(1)根據(jù)以上數(shù)據(jù),能否有90%的把握認(rèn)為A市市民“支持全面二孩”與“性別”有關(guān)?
(2)現(xiàn)從參與調(diào)查的女性用戶中按分層抽樣的方法選出11名發(fā)放禮品,在所抽取的11人中分別求出“支持”和“不支持”態(tài)度的人數(shù);
(3)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從A市所有市民中,采取隨機抽樣的方法抽取3位市民進行長期跟蹤調(diào)查,記被抽取的3位市民中持“支持”態(tài)度人數(shù)為X.
①求X的分布列;
②求X的數(shù)學(xué)期望E(X)和方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{3x+1,x<0}\end{array}\right.$,則不等式f(x)<4f(x)+1的解集是{x|x>-$\frac{1}{9}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若數(shù)列{an}的通項公式為an=2n+3,則a1+a3+a5+…+a99=5150.

查看答案和解析>>

同步練習(xí)冊答案