分析 (1)運(yùn)用等差數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公差,即可得到所求通項(xiàng);
(2)求得2n•an=(3n-7)•2n,再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理,即可得到所求和.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
由a2=-1,a5=8,可得a1+d=-1,a1+4d=8,
解方程可得a1=-4,d=3,
則an=a1+(n-1)d=-4+3(n-1)=3n-7;
(2)2n•an=(3n-7)•2n,
前n項(xiàng)和Sn=-4•2+(-1)•4+2•8+…+(3n-7)•2n,
2Sn=-4•4+(-1)•8+2•16+…+(3n-7)•2n+1,
兩式相減可得,-Sn=-8+3(4+8+…+2n)-(3n-7)•2n+1
=-8+3•$\frac{4(1-{2}^{n-1})}{1-2}$-(3n-7)•2n+1
化簡(jiǎn)可得Sn=20+(3n-10)•2n+1.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的運(yùn)用,考查數(shù)列的求和方法:錯(cuò)位相減法,同時(shí)考查等比數(shù)列的求和公式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | (0,1) | C. | [1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最大值$\frac{1}{2}$ | B. | 有最小值$\frac{1}{2}$ | C. | 有最大值$\frac{5}{2}$ | D. | 有最小值$\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | 2016 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com