4.已知f(x-1)是偶函數(shù),且在(0,+∞)上單調遞增,下列說法正確的是( 。
A.$f({{2^{\frac{1}{x}}}})>f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})$B.$f({{{({\frac{1}{8}})}^2}})>f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})$
C.$f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})>f({{{({\frac{1}{8}})}^2}})$D.$f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})>f({{2^{\frac{1}{x}}}})$

分析 利用f(x-1)是偶函數(shù),可得f(-x)=f(x-2),f($lo{g}_{2}\frac{1}{8}$)=f(-3)=f(1),根據(jù)x>0,${2}^{\frac{1}{x}}$$>1>\frac{1}{64}$,f(x)在(0,+∞)上單調遞增,即可得出結論.

解答 解:∵f(x-1)是偶函數(shù),
∴f(-x-1)=f(x-1),
∴f(-x)=f(x-2),
∴f($lo{g}_{2}\frac{1}{8}$)=f(-3)=f(1),
∵x>0,${2}^{\frac{1}{x}}$$>1>\frac{1}{64}$,f(x)在(0,+∞)上單調遞增,
∴$f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})>f({{{({\frac{1}{8}})}^2}})$.
故選:C.

點評 本題考查函數(shù)的奇偶性與單調性的綜合,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.(1)$(0.027)^{-\frac{1}{3}}$-$25{6}^{\frac{3}{4}}$+$(2\sqrt{2})^{-\frac{2}{3}}$+π0
(2)2log32-log332+log38-5log53

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若點A的坐標為(3,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為( 。
A.(2,2)B.($\frac{1}{2}$,1)C.(1,$\sqrt{2}$)D.(0,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1上的點P到它的左焦點的距離是8,那么點P到它的右焦點的距離是12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設集合A={1,2,3,5,7},B={x∈N|2<x≤6},全集U=AU B,則A∩(∁uB)=(  )
A.{1,2,7}B.{1,7}C.{2,3,7}D.{2,7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=cosx與函數(shù)g(x)=loga($\frac{1}{a}$)x(a>0且a≠1),則函數(shù)F(x)=$\frac{f(x)}{g(x)}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖所示,M、N、P分別是正方體ABCD-A1B1C1D1的棱AB、BC、DD1上的點.
(Ⅰ)若$\frac{BM}{MA}$=$\frac{BN}{NC}$,求證:無論點P在DD1上如何移動,總有BP⊥MN;
(Ⅱ)棱DD1上是否存在這樣的點P,使得平面APC1⊥平面A1ACC1?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在平面直角坐標系XOY中,點集K={(x,y)|(|x|+2|y|-4)(2|x|+|y|-4)≤0}所對應的平面區(qū)域的面積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示在長方體ABCD-A1B1C1D1中,E,F(xiàn),M,N分別為DC,A1B1,AC,BB1的中點
(1)求證:EF⊥D1B;
(2)求證:MN∥平面AB1C1

查看答案和解析>>

同步練習冊答案