9.在數(shù)列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N),則a2012的值為( 。
A.-1B.$\frac{1}{2}$C.1D.2

分析 a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N),可得:an+3=an,即可得出.

解答 解:∵a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N),
∴a2=2,a3=-1,a4=$\frac{1}{2}$,…,
∴an+3=an,
∴a2012=a670×3+2=a2=2.
故選:D.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若|x-a|+|x-a2|≥2(a是常數(shù))恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求等差數(shù)列-2,1,4,7…的通項(xiàng)公式和前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=(a-1)x3+x2+(b-4)x+c為偶函數(shù).則求函數(shù)g(x)=ax2+bx在區(qū)間[c,c+1]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知集合A={x|kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z},B={x|-π<x<π},則A∩B={x|-π<x≤$-\frac{2π}{3}$或-$\frac{π}{6}$≤x≤$\frac{π}{3}$或$\frac{5π}{6}$≤x<π}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.(1)已知$\overrightarrow{a}$,$\overrightarrow$不共線,若λ1$\overrightarrow{a}$+$\overrightarrow$=-$\overrightarrow{a}$+μ1$\overrightarrow$,則λ1=-1,μ1=1.
(2)已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,3),$\overrightarrow{c}$=(3,4),若$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$,則2λ+μ=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(-3,4),則2$\overrightarrow{a}$+$\overrightarrow$等于( 。
A.(3,4)B.(1,2)C.-7D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=cosωx(sinωx+$\sqrt{3}$cosωx)(ω>0),如果存在實(shí)數(shù)x0,使得對(duì)任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為( 。
A.$\frac{1}{2016π}$B.$\frac{1}{4032π}$C.$\frac{1}{2016}$D.$\frac{1}{4032}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.雙曲線$\frac{y^2}{9}-{x^2}=1$的實(shí)軸長(zhǎng)是6,焦點(diǎn)坐標(biāo)是$(0,±\sqrt{10})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案