13.已知集合A={x|x2-2x-3=0},B={x|-2<x<3},則A∩B=( 。
A.{-1,3}B.{-1}C.{3}D.

分析 求出A中方程的解確定出A,找出A與B的交集即可.

解答 解:由A中方程變形得:(x-3)(x+1)=0,
解得:x=-1或x=3,即A={-1,3},
∵B=(-2,3),
∴A∩B={-1},
故選:B.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)定義域?yàn)閇0,1],若f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱(chēng)x*為函數(shù)f(x)的峰點(diǎn),f(x)為含峰函數(shù).(特別地,若f(x)在[0,1]上單調(diào)遞增或遞減,則峰點(diǎn)為1或0)
對(duì)于不易直接求出峰點(diǎn)x*的含峰函數(shù),可通過(guò)做試驗(yàn)的方法給出x*的近似值.試驗(yàn)原理為:“對(duì)任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間,此時(shí)稱(chēng)x1為近似峰點(diǎn);若f(x1)<f(x2),則(x1,1)為含峰區(qū)間,此時(shí)稱(chēng)x2為近似峰點(diǎn)”.
我們把近似峰點(diǎn)與x*之間可能出現(xiàn)的最大距離稱(chēng)為試驗(yàn)的“預(yù)計(jì)誤差”,記為d,其值為d=max{max{x1,x2-x1},max{x2-x1,1-x2}}(其中max{x,y}表示x,y中較大的數(shù)).
(Ⅰ)若x1=$\frac{1}{4}$,x2=$\frac{1}{2}$.求此試驗(yàn)的預(yù)計(jì)誤差d.
(Ⅱ)如何選取x1、x2,才能使這個(gè)試驗(yàn)方案的預(yù)計(jì)誤差達(dá)到最?并證明你的結(jié)論(只證明x1的取值即可)
(Ⅲ)選取x1,x2∈(0,1),x1<x2,可以確定含峰區(qū)間為(0,x2)或(x1,1).在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類(lèi)似地可以進(jìn)一步得到一個(gè)新的預(yù)計(jì)誤差d′.分別求出當(dāng)x1=$\frac{1}{4}$和x1=$\frac{2}{5}$時(shí)預(yù)計(jì)誤差d′的最小值.(本問(wèn)只寫(xiě)結(jié)果,不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.命題“?x∈R,x2-1>0”的否定是( 。
A.?x∈R,x2-1≤0B.?x0∈R,x02-1>0C.?x0∈R,x02-1≤0D.?x∈R,x2-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.當(dāng)x=$\frac{π}{4}$時(shí),函數(shù)f(x)=Asin(x+φ)(A>0)取得最小值,則函數(shù)y=f($\frac{3π}{4}$-x)是( 。
A.奇函數(shù)且圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱(chēng)B.偶函數(shù)且圖象關(guān)于點(diǎn)(π,0)對(duì)稱(chēng)
C.奇函數(shù)且圖象關(guān)于($\frac{π}{2}$,0)對(duì)稱(chēng)D.偶函數(shù)且圖象關(guān)于點(diǎn)($\frac{π}{2}$,0)對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若cosα+sinα=$\frac{2}{3}$,則$\frac{\sqrt{2}sin(2α-\frac{π}{4})+1}{1+tanα}$的值為(  )
A.$\frac{5}{9}$B.0C.-$\frac{5}{18}$D.-$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-2,(x≤1)}\\{-lo{g}_{2}(x+1),(x>1)}\end{array}\right.$,則f[f(3)]=( 。
A.-$\frac{15}{8}$B.-$\frac{15}{4}$C.-$\frac{3}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.命題“?x0∈R,2${\;}^{{x}_{0}}$=x0+1.”的否定是?x∈R,2x≠x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)a>0,b>0,則“x>a且y>b”是“x+y>a+b,且xy>ab”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知△ABC的外接圓的圓心為O,半徑為1,2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|,則向量$\overrightarrow{AC}$在向量$\overrightarrow{BC}$方向上的投影為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案