分析 (1)由條件利用絕對(duì)值的意義,求得實(shí)數(shù)a的取值范圍.
(2)要證的不等式等價(jià)于 (1-a2)(1-b2)>0,由條件得到(1-a2)>0,且(1-b2)>0,不等式得證.
解答 解:(1)由于|x-3|+|x-4|≤表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到3、4對(duì)應(yīng)點(diǎn)的距離之和,它的最小值為1,
由于關(guān)于x的不等式|x-3|+|x-4|≤|a|的解集為空集,
故|a|<1,求得-1<a<1.
(2)若實(shí)數(shù)b與實(shí)數(shù)a取值范圍完全相同,即-1<b<1,即|b|<1,
|1-ab|>|a-b|,等價(jià)于 (1-ab)2>(a-b)2,等價(jià)于1+a2b2-a2-b2>0,
等價(jià)于 (1-a2)(1-b2)>0.
由于(1-a2)>0,且(1-b2)>0,故(1-a2)(1-b2)>0成立,即|1-ab|>|a-b|成立.
點(diǎn)評(píng) 本題主要考查絕對(duì)值的意義,絕對(duì)值不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{2}{3}$ | C. | -2 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+$\sqrt{3}$y-4=0 | B. | x-$\sqrt{3}$y-4=0 | C. | x-$\sqrt{3}$y+4=0 | D. | x+$\sqrt{3}$y+4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,2) | B. | (-1,1) | C. | [0,1] | D. | (-1,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {3} | B. | {-1,3} | C. | {-1,0,3} | D. | {-1,1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2] | B. | $(1,\sqrt{3}]$ | C. | (1,3] | D. | R |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com