20.已知集合A={x|$\frac{2x-1}{x-2}>1$},B={x|-3<x<4,x∈Z},則A∩B=( 。
A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,3}C.{-2,3}D.{3}

分析 利用交集定義求解.

解答 解:由$\frac{2x-1}{x-2}>1$,得到$\frac{x+1}{x-2}$>0,即(x+1)(x-2)>0,解得x<-1,或x>2,
∴A=(-∞,-1)∪(2,+∞),
∵B={x|-3<x<4,x∈Z}={-2,-1,0,1,2,3},
∴A∩B={-2,3}.
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}(x+1),x∈[0,2)}\\{1-|x-4|,x∈[2,+∞)}\end{array}\right.$,則關(guān)于x的函數(shù)F(x)=f(x)-a(0<a<1)的所有零點(diǎn)個(gè)數(shù)為( 。
A.4B.3C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.當(dāng)x→0時(shí),下列4個(gè)無窮小量中比其它3個(gè)更高階的無窮小量是( 。
A.1n(1+x)B.ex-1C.tanx-sinxD.1-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,S3=12.
( I) 求數(shù)列{an}的通項(xiàng)公式;
( II)若a3,ak+1,Sk成等比數(shù)列,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.定義在R上的函數(shù)f(x)對(duì)?x,y∈R都有f(x+y)=f(x)+f(y)且x>0時(shí),恒有f(x)<0.
(1)證明f(x)是奇函數(shù);
(2)證明f(x)是減函數(shù);
(3)若f(3x•k)+f(3x-9x-2)>0對(duì)?x∈R恒成立,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( 。
A.x2cosxB.sinx2C.xsinxD.x2-$\frac{1}{6}$x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=|$\frac{x}{1+x}$|,當(dāng)f(x)的定義域?yàn)椋╩,+∞)時(shí),值域恰為[0,1),則實(shí)數(shù)m的取值范圍是(-$\frac{1}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線過點(diǎn)P(3,-$\sqrt{2}$),離心率e=$\frac{\sqrt{5}}{2}$,試求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}為空間的一個(gè)基底,且$\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{OB}$=-3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+2$\overrightarrow{{e}_{3}}$,$\overrightarrow{OC}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,能否以{$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$}作為空間的一組基底?

查看答案和解析>>

同步練習(xí)冊(cè)答案