12.將函數(shù)y=cos2x的圖象上所有的點(diǎn)向右平移$\frac{1}{2}$個(gè)單位,得到的圖象所對應(yīng)的函數(shù)解析式為(  )
A.$y=cos(2x-\frac{1}{2})$B.$y=cos(2x+\frac{1}{2})$C.y=cos(2x-1)D.y=cos(2x+1)

分析 將函數(shù)y=cos2x的圖象向右平移$\frac{1}{2}$個(gè)單位,得到的新函數(shù)的解析式要在x上減去平移的大小,再用誘導(dǎo)公式得到結(jié)果.

解答 解:∵將函數(shù)y=cos2x的圖象向右平移$\frac{1}{2}$個(gè)單位,
∴解析式為y=cos2(x-$\frac{1}{2}$)=cos(2x-1).
故選:C.

點(diǎn)評 本題考查三角函數(shù)圖象的平移和誘導(dǎo)公式的應(yīng)用,本題解題的關(guān)鍵是抓住平移的方向和大小,注意這種情況下只在自變量的系數(shù)是1的情況下加或減,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若f(x)=1-2a-2asinx-2cos2x的最小值為g(a).
(1)求g(a)的表達(dá)式
(2)當(dāng)g(a)=$\frac{1}{2}$時(shí),求a的值,并求此時(shí)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算:
(1)$\root{3}{(-2)^{3}}$-($\frac{1}{3}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4;          
(2)lg25+lg50•lg2+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若冪函數(shù)$f(x)=({m^2}-3m+3){x^{{m^2}+m-2}}$的圖象不經(jīng)過原點(diǎn),則實(shí)數(shù)m的值為( 。
A.1或2B.1或-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合U={1,2,3,4,5,6},A={2,3,5},B={1,3,6},則∁U(A∪B)=(  )
A.{4}B.ϕC.{1,2,4,5,6}D.{1,2,3,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$cosα=\frac{4}{5}$,則cos2α-sin2α=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|y=lg(x-1)},B={x|x2-4≤0},則A∩B=( 。
A.{x|1<x<2}B.{x|1≤x≤3}C.{x|1<x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,甲船以每小時(shí)30$\sqrt{2}$海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時(shí),乙船位于甲船的南偏西75°方向的B1處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的南偏西60°方向的B2處,此時(shí)兩船相距10$\sqrt{2}$海里.問:乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知A(1,-2),B(2,1),C(3,2),D(-2,3).
(1)求$\overrightarrow{AD}$+2$\overrightarrow{BD}$-3$\overrightarrow{BC}$;
(2)設(shè)$\overrightarrow{CM}$=3$\overrightarrow{CA}$,$\overrightarrow{CN}$=-2$\overrightarrow{BC}$,求$\overrightarrow{MN}$及M、N點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案