分析 (I)利用橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦點為${F_2}({\sqrt{3},0})$,離心率是$\frac{{\sqrt{3}}}{2}$,求出a,c,b,即可求橢圓C的方程;
(II)設(shè)M(x1,y1),N(x2,y2),直線MN的方程為y=kx+m,代入橢圓方程,利用韋達定理及點到直線的距離公式,即可得到結(jié)論.
解答 (I)解:∵橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦點為${F_2}({\sqrt{3},0})$,離心率是$\frac{{\sqrt{3}}}{2}$,
∴c=$\sqrt{3}$,$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,
∴a=2,∴b=1,
∴橢圓C的方程為$\frac{x^2}{4}+{y^2}=1$;
(II)證明:設(shè)M(x1,y1),N(x2,y2),
直線MN的方程y=kx+m,代入橢圓方程,消元可得(1+4k2)x2+8kmx+4m2-4=0
∴x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$
∵OM⊥ON,∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,
∴x1x2+y1y2=0,∴(1+k2)$\frac{4{m}^{2}-4}{1+4{k}^{2}}$-km×$\frac{8km}{1+4{k}^{2}}$+m2=0
∴5m2=4(k2+1)
∴原點O到直線的距離為d=$\frac{|m|}{\sqrt{{k}^{2}+1}}$=$\frac{{2\sqrt{5}}}{5}$.
綜上,點O到直線AB的距離為定值,定值為$\frac{{2\sqrt{5}}}{5}$.
點評 本題考查橢圓的標準方程,考查直線與橢圓的綜合,聯(lián)立方程,利用韋達定理是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 144種 | B. | 336種 | C. | 408種 | D. | 480種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (±3,0) | B. | (±$\frac{1}{3}$,0) | C. | (±$\frac{3}{20}$,0) | D. | (0,±$\frac{3}{20}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com