分析 畫出函數(shù)y=x+x-1-2,y=log3x的圖象,f(x)=x+x-1-2-log3x,由f(1)=0,f(2)<0,f(3)>0,運用零點存在定理,即可得到所求方程的解的個數(shù).
解答 解:由x>0,可得x+x-1≥2,
即有x+x-1-2=log3x≥0,解得x≥1,
當x=1時,方程成立;
f(x)=x+x-1-2-log3x,f(2)=2+$\frac{1}{2}$-2-log32<0,
f(3)=3+$\frac{1}{3}$-2-log33=$\frac{4}{3}$-1>0,
即有方程在(2,3)有一個實根.
故方程x+x-1-2=log3x的實數(shù)解的個數(shù)為2,
故答案為:2.
點評 本題考查方程的解的個數(shù),注意運用圖象和函數(shù)的零點存在定理,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com