7.在[0,2π]上,使不等式2sinx≥1成立的x的集合[$\frac{π}{6}$,$\frac{5π}{6}$].

分析 由已知可得sinx≥$\frac{1}{2}$,結(jié)合正弦函數(shù)的圖象和性質(zhì)及x∈[0,2π],可得答案.

解答 解:∵2sinx≥1,
∴sinx≥$\frac{1}{2}$,
又∵x∈[0,2π],
∴x∈[$\frac{π}{6}$,$\frac{5π}{6}$],
故答案為:[$\frac{π}{6}$,$\frac{5π}{6}$]

點評 本題考查的知識點是正弦函數(shù)的圖象和性質(zhì),熟練掌握正弦函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若對數(shù)函數(shù)f(x)的圖象過點(9,2),則f(3)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列函數(shù)的定義域:
(1)y=5${\;}^{\sqrt{x-1}}$;
(2)y=$\sqrt{(\frac{1}{5})^{x}-25}$;
(3)y=$\frac{1}{1-{3}^{x}}$;
(4)y=$\frac{\sqrt{16-{2}^{x}}}{x+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若x∈[0,$\frac{π}{4}$],則所數(shù)y=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的最大值為$\sqrt{2}$,相應(yīng)的x值為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=4x-2x+1+1(x>0)的反函數(shù)為y=f-1(x),則f-1(9)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=1-$\frac{4}{x}$在區(qū)間(-∞,0)上是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.把函數(shù)y=-2sin(x-$\frac{π}{3}$)的圖象向左平移m(m>0)個單位,所得的圖象關(guān)于y軸對稱,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若loga$\frac{1}{27}$=-3,則底數(shù)a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知tanθ=-2,-$\frac{π}{2}$<θ<0,求cos(θ+$\frac{π}{6}$)的值.

查看答案和解析>>

同步練習(xí)冊答案