2.已知點(diǎn)P是圓C:x2+y2=16上一動(dòng)點(diǎn),線段PQ垂直于x軸于Q點(diǎn),點(diǎn)M為線段PQ的中點(diǎn),則點(diǎn)M的軌跡方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$.

分析 利用中點(diǎn)坐標(biāo)公式,確定P,M坐標(biāo)之間的關(guān)系,將P的坐標(biāo)代入圓的方程,即可求得M的軌跡方程.

解答 解:設(shè)M(x,y),則P(x,2y)
∵P在圓x2+y2=16上,
∴x2+4y2=16,
∴$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$.
故答案為:$\frac{x^2}{16}+\frac{y^2}{4}=1$.

點(diǎn)評 本題考查軌跡方程,考查代入法的運(yùn)用,考查學(xué)生的計(jì)算能力,確定坐標(biāo)之間的關(guān)系是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\vec a=(sinπx,1),\vec b=(\sqrt{3},cosπx)$,$f(x)=\vec a•\vec b$
(I)若x∈[0,2],求$f(x)=\vec a•\vec b$的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)y=f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的坐標(biāo)為P,第一個(gè)最低點(diǎn)的坐標(biāo)為Q,坐標(biāo)原點(diǎn)為O,求∠POQ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a>0,且a≠1,函數(shù)f(x)的定義域是[-1,1],且滿足f(logax)=$\frac{a}{{a}^{2}-1}$(x-$\frac{1}{x}$)
(Ⅰ)求函數(shù)f(x);
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若實(shí)數(shù)m滿足f(m-$\frac{1}{2}$)+f($\frac{1}{4}$-2m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中正確的個(gè)數(shù)是( 。
(1)若直線a不平行于平面α且a?α,則α內(nèi)不存在與a平行的直線
(2)若直線a∥b,且a∥α,則b∥α
(3)若直線l上有無數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α
(4)若平面α與平面β相交,則他們有無窮個(gè)公共點(diǎn).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知F1和F2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P(-1,$\frac{\sqrt{2}}{2}$)在該橢圓上,且PF1⊥x軸.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)A(2,0)作直線l交橢圓于不同的兩點(diǎn)B,C,證明:不存在直線l,使得|BF2|=|CF2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知拋物線y2=2px(p>0)的焦點(diǎn)是雙曲線$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{p}$=1的一個(gè)焦點(diǎn),則雙曲線方程為$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:
(1)${0.2^{-2}}-{π^0}+{(\frac{1}{27})^{-\;\;\frac{1}{3}}}$;
(2)log39+log26-log23+log43×log316.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù).
(Ⅰ)列舉出所有可能的結(jié)果,并求兩點(diǎn)數(shù)之和為5的概率;
(Ⅱ)求以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{x}{2}$,cos$\frac{x}{2}$),$\overrightarrow{n}$=(sin$\frac{x}{2}$,cos$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在銳角△ABC中,已知A=$\frac{π}{3}$,求f(B)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案