分析 (1)利用正弦定理把已知等式中的邊轉化為角的正弦,進而利用兩角和公式化簡求得sinB的值.
(2)利用余弦定理先求出a,c的值,利用三角形的面積公式進行計算即可.
解答 解:(1)在△ABC中,∵3acosB=bcosC+ccosB,
∴由正弦定理,得3sinAcosB=sinBcosC+sinCcosB,
即sin(B+C)=3sinAcosB,
∵A、B、C是△ABC的三內角,
∴sin(B+C)=sinA≠0,
∴sinA=3sinAcosB,
∴cosB=$\frac{1}{3}$.則sinB=$\sqrt{1-(\frac{1}{3})^{2}}=\sqrt{1-\frac{1}{9}}$=$\sqrt{\frac{8}{9}}$=$\frac{2\sqrt{2}}{3}$.
(2)∵cosB=$\frac{1}{3}$.
∴b2=a2+c2-2accosB,
∵b=4,a=c,
∴16=a2+a2-2a2×$\frac{1}{3}$=$\frac{4}{3}$a2,
則a2=12.則a=$\sqrt{12}$=2$\sqrt{3}$,
則△ABC的面積S=$\frac{1}{2}$acsinB=$\frac{1}{2}$a2sinB=$\frac{1}{2}×12×$$\frac{2\sqrt{2}}{3}$=4$\sqrt{2}$.
點評 本題主要考查解三角形的應用,利用正弦定理余弦定理以及三角形的面積公式是解決本題的關鍵.考查學生的計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com