16.對(duì)任意的函數(shù)f(x),g(x),在公共定義域內(nèi),規(guī)定f(x)*g(x)=min{f(x),g(x)}(min{f(x),g(x)}為f(x)與g(x)中的最小的一個(gè)),若函數(shù)f(x)=lg(3-x),g(x)=lg$\sqrt{2x-3}$,則f(x)*g(x)的最大值為0.

分析 求出函數(shù)的定義域,運(yùn)用分段函數(shù)的形式,分別求得各段的范圍,即可得到最大值.

解答 解:∵f(x)*g(x)=min{f(x),g(x)},
∴f(x)*g(x)=min{lg(3-x),lg$\sqrt{2x-3}$}的定義域?yàn)椋?\frac{3}{2}$,3),
f(x)*g(x)=min{lg(3-x),lg$\sqrt{2x-3}$}=$\left\{\begin{array}{l}{lg\sqrt{2x-3},\frac{3}{2}<x≤2}\\{lg(3-x),2<x<3}\end{array}\right.$,
當(dāng)$\frac{3}{2}$<x≤2時(shí),y=lg$\sqrt{2x-3}$遞增,即有x=2時(shí),取得最大值,且為0;
當(dāng)2<x<3時(shí),y=lg(3-x)遞減,即有y<0.
畫出其圖象如圖,由圖象可知f(x)*g(x)的最大值為0,
故答案為:0.

點(diǎn)評(píng) 本題考點(diǎn)是函數(shù)的最值及其幾何意義,本題考查新定義,需要根據(jù)題目中所給的新定義由函數(shù)的單調(diào)性求得函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.命題“?x∈[1,2],x2+ax+9≥0”是假命題,則實(shí)數(shù)a的取值范圍是(-∞,-$\frac{13}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知α是第三象限角,且f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cot(-α-π)sin(-π-α)}$
(1)化簡(jiǎn)f(α);
(2)若cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-$\frac{16π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=log2(x2+2x-3),則函數(shù)f(1nx)的定義域是( 。
A.[e-3,e]B.(e-3,e)C.(-∞,e-3]∪[e,+∞)D.(0,e-3)∪(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知1gx+1gy=21g(2x-3y),求log${\;}_{\frac{2}{3}}$$\frac{x}{y}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2-x+m,且f(log2a)=m,log2f(a)=2,(a≠1).
(1)求a,m的值;
(2)當(dāng)x∈[1,4]時(shí),求f(log2x)的最值及對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.用max{a,b,c}表示a,b,c三個(gè)數(shù)中的最大值,如max{4,-4,6}=6,設(shè)f(x)=max{x2,x+2,12-x},則f(x)的最小值為( 。
A.6B.9C.7D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.對(duì)于0.43和log40.3,下列說(shuō)法正確的是( 。
A.0.43<log40.3B.0.43>log40.3C.0.43=log40.3D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)y=|log${\;}_{\frac{1}{2}}$x|的定義域?yàn)閇$\frac{1}{2}$,m],值域?yàn)閇0,1],則m的取值范圍為[1,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案