18.已知數(shù)列{an}滿足a2=2,且數(shù)列{3an-2n}為公比為2的等比數(shù)列,則a1=1,數(shù)列{an}通項(xiàng)公式an=$\frac{2n+{2}^{n-1}}{3}$.

分析 由于3a2-4=2.利用等比數(shù)列的通項(xiàng)公式可得3an-2n,即可得出.

解答 解:3a2-4=2.
∴3an-2n=2×2n-2=2n-1
∴3a1-2=1,解得a1=1.
∴an=$\frac{2n+{2}^{n-1}}{3}$.
故答案分別為:1;$\frac{2n+{2}^{n-1}}{3}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(x+1),x≥0}\\{-x{e}^{x},x<0}\end{array}\right.$,方程f2(x)+mf(x)=0(m∈R)有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-$\frac{1}{e}$)B.(-$\frac{1}{e}$,0)C.(-$\frac{1}{e}$,+∞)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.集合A={x|x2-2x-8≤0},B={x|2x<8},則A∩B=(  )
A.(-∞,2]B.[-2,3)C.[-4,3)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某建筑工地在施工過(guò)程中,為了保護(hù)一口直徑為1米的圓形古井M,決定將其圍起來(lái),工地上現(xiàn)有一塊長(zhǎng)為2米(寬為1.2米)的木工板AB可利用,現(xiàn)將其圍成高1.2米的圍擋,如圖,圓M與AB,PA,PB(PA,PB為另外兩側(cè)的圍擋)均相切.
(1)若PA=PB,計(jì)算△PAB的面積;
(2)問(wèn):至少還需要添置多長(zhǎng)的木工板.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1且與x軸垂直的直線交橢圓于A、B兩點(diǎn),直線AF2與橢圓的另一個(gè)交點(diǎn)為C,若△ABF2的面積是△BCF2的面積的2倍,則橢圓的離心率為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知A(-2,0),B(2,0)為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn),離心率e=$\frac{1}{2}$,P是橢圓C上異于A,B的動(dòng)點(diǎn).
(1)求證:kPA•kPB為定值;
(2)過(guò)點(diǎn)Q(1,0)作兩條互相垂直的直線l1,l2,分別交曲線C于E,F(xiàn),G,H,求四邊形EFGH面積的最小值及取得最小值時(shí)直線l1,l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算:${∫}_{1}^{2}$($\frac{1}{x}$+$\frac{1}{{x}^{2}}$)dx=$\frac{1}{2}$+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若$\frac{h(x)-g(x)}{x-{x}_{0}}$>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”,則f(x)=lnx+x2-x的“類對(duì)稱點(diǎn)”的橫坐標(biāo)是(  )
A.2B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=1g$\frac{2+x}{2-x}$,求此函數(shù)的定義域并判斷此函數(shù)的奇偶性.

查看答案和解析>>

同步練習(xí)冊(cè)答案