2.已知不等式ax2-3x+6>4的解集為{x|x<1或x>b}.解不等式ax2-(2a+b)x+2b<0.

分析 根據(jù)韋達(dá)定理求出a,b的值,把a(bǔ),b的值代入不等式,解不等式即可

解答 解:由不等式ax2-3x+6>4的解集為{x|x<1或x>b},
所以x1=1與x2=b是方程ax2-3x+2=0的兩個(gè)實(shí)數(shù)根,b>1且a>0.
由根與系數(shù)的關(guān)系,得$\left\{\begin{array}{l}{1+b=\frac{3}{a}}\\{1×b=\frac{2}{a}}\end{array}\right.$,
解得a=1,b=2
所以不等式ax2-(2a+b)x+2b<0可化為x2-4x+4<0,
即(x-2)2<0,
解集為∅.

點(diǎn)評 本題考查了一元二次不等式的解法,考查了“三個(gè)二次”之間的關(guān)系,是基礎(chǔ)的運(yùn)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)隨機(jī)變量ξ~B(4,$\frac{1}{3}$),則P(ξ=2)的值為( 。
A.$\frac{4}{81}$B.$\frac{4}{27}$C.$\frac{4}{9}$D.$\frac{8}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求證:f(x)≥x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.三角形的面積為S=$\frac{1}{2}$(a+b+c)r,a,b,c為三邊的邊長,r為三角形內(nèi)切圓半徑,利用類比推理可得出四面體的體積為( 。
A.V=$\frac{1}{3}$abc (a,b,c為底邊邊長)
B.V=$\frac{1}{3}$Sh(S為地面面積,h為四面體的高)
C.V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c為底邊邊長,h為四面體的高)
D.V=$\frac{1}{3}$(S1+S2+S3+S4)r(其中S1,S2,S3,S4分別為四面體四個(gè)面的面積,r為四面體內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知x>1,求3x+$\frac{4}{x-1}$+1的最小值;
(2)已知0≤x≤2,求函數(shù)f(x)=$\sqrt{x(4-2x)}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2-2x,g(x)=ax+2(a>0),且對任意的x1∈[-1,2],都存在x2∈[-1,2],使f(x2)=g(x1),則實(shí)數(shù)a的取值范圍是( 。
A.[3,+∞)B.(0,3]C.[$\frac{1}{2}$,3]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將正奇數(shù)排成如圖所示的三角形數(shù)陣(第k行有k個(gè)奇數(shù)),其中第i行第j個(gè)數(shù)表示為aij,例如a42=15,若aij=2015,則i-j=( 。
A.26B.27C.28D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$f(x)=\left\{{\begin{array}{l}{\sqrt{4-{x^2}},1<x≤2}\\{2f({\frac{x}{2}}),x>2}\end{array}}\right.$,若函數(shù)y=f(x)-ax在(1,+∞)上無零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.$({-∞,-\sqrt{3}}]∪({\sqrt{3},+∞})$B.$({-∞,-\sqrt{3}})∪[{\sqrt{3},+∞})$C.$({-∞,0}]∪({\sqrt{3},+∞})$D.$({-∞,0})∪[{\sqrt{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若tanα=-3,則$\frac{cosα+2sinα}{2cosα-3sinα}$的值為$-\frac{5}{11}$.

查看答案和解析>>

同步練習(xí)冊答案