14.設向量$\overrightarrow a=(1,2),\overrightarrow b=(-2,y),若\overrightarrow a∥\overrightarrow b,則|3\overrightarrow a+\overrightarrow b|$等于$\sqrt{5}$.

分析 根據(jù)向量共線解出y,代入坐標計算.

解答 解:∵$\overrightarrow{a}∥\overrightarrow$,∴$\frac{1}{-2}=\frac{2}{y}$,解得y=-4.
∴3$\overrightarrow{a}+\overrightarrow$=(1,2).∴|3$\overrightarrow{a}+\overrightarrow$|=$\sqrt{5}$.
故答案為$\sqrt{5}$.

點評 本題考查了平面向量的共線定理和模長計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓C:3x2+4y2=12.設橢圓C上在第二象限的點P的橫坐標為-1,過點P的直線l1,l2與橢圓C的另一交點分別為A,B.且l1,l2的斜率互為相反數(shù),A,B兩點關于坐標原點O的對稱點分別為M,N,
(Ⅰ)求證直線AB的斜率為定值.
(Ⅱ)求四邊形ABMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函數(shù),則a=1,使f(x)>3成立的x的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.一只受傷的丹頂鶴在如圖所示(直角梯形)的草原上飛過,其中AD=$\sqrt{2}$,DC=2,BC=1,它可能隨機在草原上任何一處(點),若落在扇形沼澤區(qū)域ADE以外丹頂鶴能生還,則該丹頂鶴生還的概率是1-$\frac{π}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.一個幾何體的三視圖如圖所示,則該幾何體的表面積=3π+2$\sqrt{7}$-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.曲線y=$\sqrt{4-{x}^{2}}$與直線y=x+b恰有1個公共點,則b的取值范圍為[-2,2)∪{2$\sqrt{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.101(2)化為十進制數(shù)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.定義平面向量之間的一種運算“⊙”如下:對任意的$\overrightarrow a=(m,n),\overrightarrow b=(p,q)$(其中m,n,p,q均為實數(shù)),令$\overrightarrow a⊙\overrightarrow b=mq-np$.在下列說法中:
(1)若向量$\overrightarrow a與\overrightarrow b$共線,則$\overrightarrow a⊙\overrightarrow b=0$;
(2)$\overrightarrow a⊙\overrightarrow b=\overrightarrow b⊙\overrightarrow a$;
(3)對任意$λ∈R,有(λ\overrightarrow a)⊙\overrightarrow b=λ(\overrightarrow a⊙\overrightarrow b)$;
(4)${(\overrightarrow a⊙\overrightarrow b)^2}+{(\overrightarrow a•\overrightarrow b)^2}={|{\overrightarrow a}|^2}{|{\overrightarrow b}|^2}$(其中$\overrightarrow a•\overrightarrow b$表示$\overrightarrow a與\overrightarrow b$的數(shù)量積,$|{\overrightarrow a}$|表示向量的模).
正確的說法是(1),(3),(4).(寫出所有正確的說法的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知$\overrightarrow{a}$=(2,-3,1),$\overrightarrow$=(1,0,3),$\overrightarrow{c}$=(0,0,2),則$\overrightarrow{a}$+6$\overrightarrow$-8$\overrightarrow{c}$=(8,-3,3).

查看答案和解析>>

同步練習冊答案