14.已知函數(shù)f(x)滿足f(sinx)=sin2x.則f(cos75°)的值為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 由已知利用三角函數(shù)的性質(zhì)得f(cos75°)=f(sin15°),由此利用函數(shù)的性質(zhì)能求出結(jié)果.

解答 解:∵函數(shù)f(x)滿足f(sinx)=sin2x,
∴f(cos75°)=f(sin15°)=sin30°=$\frac{1}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=log2(x2+2x-3),則函數(shù)f(1nx)的定義域是(  )
A.[e-3,e]B.(e-3,e)C.(-∞,e-3]∪[e,+∞)D.(0,e-3)∪(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對(duì)于0.43和log40.3,下列說法正確的是(  )
A.0.43<log40.3B.0.43>log40.3C.0.43=log40.3D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x|2a-x|+2x,g(x)=2ax2+2x-3-a,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若a=2時(shí),函數(shù)f(x)-m=0有兩個(gè)零點(diǎn),求實(shí)數(shù)m的值;
(3)若函數(shù)g(x)在區(qū)間[-1,1]上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)$\left\{\begin{array}{l}{|lo{g}_{2}(|x-1|)-1|\\;x≠1}\\{0\\;x=1}\end{array}\right.$的單調(diào)遞增區(qū)間為(-1,1),[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1}&{x≤0}\\{lo{g}_{2}x}&{x>0}\end{array}\right.$,則函數(shù)y=f[f(x)]-1的圖象與x軸有2個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=|log${\;}_{\frac{1}{2}}$x|的定義域?yàn)閇$\frac{1}{2}$,m],值域?yàn)閇0,1],則m的取值范圍為[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.判斷下列函數(shù)的奇偶性.
(1)f(x)=lg$\frac{1-x}{1+x}$;
(2)f(x)=ln($\sqrt{1+{x}^{2}}$-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)D(x)=$\left\{{\begin{array}{l}{1,x為有理數(shù)}\\{0,x為無理數(shù)}\end{array}}$,有下列四個(gè)結(jié)論:
①D(x)的值域?yàn)閧0,1};②D(x)是偶函數(shù);③D(x)不是周期函數(shù);④D(x)不是單調(diào)函數(shù);其中正確的是①②④(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案