A. | [-1,0] | B. | [-1,2] | C. | [0,1] | D. | [0,2] |
分析 由約束條件作出可行域,由數(shù)量積的坐標(biāo)表示可得目標(biāo)函數(shù)z=-x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$作出可行域如圖,
A′(0,2),
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x+y=2}\end{array}\right.$,解得B(1,1),
由z=$\overrightarrow{OA}$•$\overrightarrow{OM}$=-x+y,得y=x+z,
由圖可知,當(dāng)直線y=x+z分別過A′和B時,z有最大值和最小值,分別為2,0,
∴$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范圍是[0,2].
故選:D.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α⊥β,則l∥m | B. | 若l⊥m,則α∥β | C. | 若l∥β,則m⊥α | D. | 若α∥β,則l⊥m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8\sqrt{2}}{3}$ | B. | $\frac{16\sqrt{2}}{3}$ | C. | $\frac{16}{3}$ | D. | $\frac{32}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A=B | B. | A⊆B | C. | B⊆A | D. | A∩B=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{7}$ | B. | $\frac{4}{7}$ | C. | $\frac{1}{3}$ | D. | $\frac{4}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com