2.設(shè)A=[-2,2],B=(-1,3),求A∩B,A∪B.

分析 進(jìn)行交集、并集的運(yùn)算即可.

解答 解:∵A=[-2,2],B=(-1,3),
∴A∩B=(-1,2],A∪B=[-2,3).

點(diǎn)評(píng) 考查區(qū)間表示集合,交集、并集的運(yùn)算,要看清求交集還是并集.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知{an}為等比數(shù)列,a1+a2+a3=1,a2+a3+a4=2,那么,a4+a5+a6=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.化簡(jiǎn)f(x)=$\sqrt{(x-1)^{2}}$+$\frac{|x|}{x}$并作圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若點(diǎn)(4,tanθ)在函數(shù)y=log2x的圖象上,則2cos2θ=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=$\frac{{x}^{3}}{3}$+(a-1)x2+2x在區(qū)間(-∞,-3)內(nèi)是增函數(shù),則a的取值范圍是(-∞,$\frac{17}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=ln(x2-(2a-b)x+b-a-2)為偶函數(shù),且在區(qū)間[a,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2)∪(1,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)求函數(shù)g(x)=x2-ax+3在區(qū)間[-1,1]上的最小值.
(2)對(duì)函數(shù)f(x)(x∈[a,b]),定義f′(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若f(x)=x2-1(-2≤x≤3),求f′(x).(可以直接寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知關(guān)于x的函數(shù)f(x)=1-$\frac{2}{{a}^{x}+1}$(a>0,且a≠1).
(1)若f(2)=$\frac{3}{5}$,求實(shí)數(shù)a的值;
(2)判斷f(x)的奇偶性;
(3)判斷f(x)在區(qū)間(-∞,+∞)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.30.7,30.5,log30.7的大小順序是30.7>30.5>log30.7.

查看答案和解析>>

同步練習(xí)冊(cè)答案