相關習題
 0  155391  155399  155405  155409  155415  155417  155421  155427  155429  155435  155441  155445  155447  155451  155457  155459  155465  155469  155471  155475  155477  155481  155483  155485  155486  155487  155489  155490  155491  155493  155495  155499  155501  155505  155507  155511  155517  155519  155525  155529  155531  155535  155541  155547  155549  155555  155559  155561  155567  155571  155577  155585  266669 

科目: 來源: 題型:解答題

某校為了解學生的學科學習興趣,對初高中學生做了一個喜歡數(shù)學和喜歡語文的抽樣調查,隨機抽取了名學生,相關的數(shù)據(jù)如下表所示:

 
數(shù)學
語文
總計
初中



高中



總計



(1) 用分層抽樣的方法從喜歡語文的學生中隨機抽取名,高中學生應該抽取幾名?
(2) 在(1)中抽取的名學生中任取名,求恰有名初中學生的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

(本題滿分13分)某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比
如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).

分數(shù)段
[50,60)
[60,70)
[70,80)
[80,90)
x∶y
1∶1
2∶1
3∶4
4∶5

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)為了了解某年段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前3個組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8.

⑴將頻率當作概率,請估計該年段學生中百米成績在[16,17)內的人數(shù);
⑵求調查中隨機抽取了多少個學生的百米成績;
⑶若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

甲、乙兩位學生參加數(shù)學競賽培訓,F(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲  82  81  79  78  95  88  93  84
乙  92  95  80  75  83  80  90  85
(1)用莖葉圖表示這兩組數(shù)據(jù),并指出兩組數(shù)據(jù)的中位數(shù)。
(2)從平均數(shù)、方差考慮,你認為哪位學生更穩(wěn)定?請說明理由。

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題12分)某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(生產能力指一天加工的零件數(shù)).從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2
表1:

生產能力分組





人數(shù)
4
8

5
3
表2:
生產能力分組




人數(shù)
6
y
36
18
(1)先確定,再在答題紙上完成下列頻率分布直方圖。就生產能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?(不用計算,可通過觀察直方圖直接回答結論)(注意:本題請在答題卡上作圖)

(2)分別估計類工人和類工人生產能力的眾數(shù)、中位數(shù)和平均數(shù)。(精確到0.1)

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題12分)下表提供了工廠技術改造后某種型號設備的使用年限和所支出的維修費用(萬元)的幾組對照數(shù)據(jù):

(年)
   
    
   
   
(萬元)
   
   
   
   
 
(1)若知道呈線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)已知工廠技改前該型號設備使用10年的維修費用為9萬元.試根據(jù)(1)求出的線性回歸方程,預測該型號設備技改后使用10年的維修費用比技改前降低多少?

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質量標準》.其中規(guī)定:居民區(qū)中的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

(1)試確定x,y的值,并寫出該樣本的眾數(shù)和中位數(shù)(不必寫出計算過程);
(2)完成相應的頻率分布直方圖.
(3)求出樣本的平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

(本題14分)下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗(噸)標準煤的幾組對照數(shù)據(jù):


3
4
5
6

2.5
3
4
4.5

(1)請畫出上表數(shù)據(jù)的散點圖;并指出x,y 是否線性相關;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程
(3)已知該廠技術改造前100噸甲產品能耗為90噸標準煤,試根據(jù)(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技術改造前降低多少噸標準煤?
(參考:用最小二乘法求線性回歸方程系數(shù)公式

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)在育民中學舉行的電腦知識競賽中,將九年級兩個班參賽的學生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

(1)求第二小組的頻率,并補全這個頻率分布直方圖;
(2)求這兩個班參賽的學生人數(shù)是多少?
(3)求兩個班參賽學生的成績的中位數(shù)。

查看答案和解析>>

科目: 來源: 題型:解答題

(本題滿分14分)惠州市在每年的春節(jié)后,市政府都會發(fā)動公務員參與到植樹活動中去.林管部門在植樹前,為保證樹苗的質量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲乙兩種樹苗中各抽測了10株樹苗的高度,量出的高度如下(單位:厘米)
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根據(jù)抽測結果,完成答題卷中的莖葉圖,并根據(jù)你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;

(2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入如圖程序框圖進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學意義.

查看答案和解析>>

同步練習冊答案